G4XS KV10Z XSG ParseStatusData

Processor Expert Example Project

Date: 21. 11. 2016

Revision: 2.0

Overview

The purpose of this example project is to show how to parse and interpret status data with use
of the GendeXtremeSwitch component. The result is printed to the console. Such an
implementation can be used to real time status reporting of device condition.

Requirements

Kinetis Design Studio 3.2.0 and newer
FRDM-KV10Z MCU board

FRDM-32XSG-EVB Gen4 eXtremeSwitch board
2x channel load

USB cable

Setting up hardware

Target platform for this example is FRDM-KV10Z MCU board with FRDM-32XSG-EVB
eXtremeSwitch board.

Chip select on FRDM-32XSG-EVB board has to be properly configured in such way that CSBO
pin is used. This can be achieved by switching number 0 on SW2 switch on the eSwitch board
to ON position. The rest of CSB routes should remain in OFF position.

Figure 1 CSB Route Selection

In order to get the project successfully running you need to connect some load to channels 1
and 3 on your FRDM eSwitch board.

Figure 2 Channel Load

Set up OpenSDA connection between PC and MCU board with USB cable.

Figure 3 OpenSDA Connection

Setting up software
Make sure you have installed KDS 3.2.0 or newer which comes with Processor Expert support.
These components must be imported to the Processor Expert Component Library.

e SPI _Device component (encapsulates SPI communication)
o Gen4deXtremeSwitch component (encapsulates eSwitch configuration)

Component Description
» = Kinetis
» = Legacy User Components
4 |[= My Components
4 = Software
4 [User Compenents
@ BC_MC32BC3770 Processor Expert support for battery charger MC32BC3770.
FRDM BiC3770 Processor Expert cypport for MC32BC3770 Charger Freedom Board
a GendeXtremeSwitc Processor Expert support for 32V eXtremeSwitch devices.
LVHEndge Low voltage H-Ernidge supporting MLS4955 MPCLISMS MPCI17C724, M...
SPI_Device Communication with SPI device placed on 5PI bus
IhreeFhasellotorl [hree-Fhase bLUL Motor Control
@ ThreePhasePredrivi Three Phase FET Pre-Driver GD3000/MC33937/MC34937

Figure 4 Processor Expert Component Library

Check that your OpenSDA connection has been set up.

=4 Device Manager

File Action View Help
e | @ E B | B

4 7 B52414-11

5 Batteries

»-€) Bluetooth Radios

» 48 Computer
¢ Disk drives
B Display adapters
&y DVD/CD-ROM drives

. % Human Interface Devices
i Imaging devices
¥ Jungo

== Keyboards
)3 Mice and other pointing devices
&/ Monitors
L¥ Network adapters
KB Portable Devices
Y3 Ports (COM & LPT)
75" ECP Printer Port (LPT1)
{'5" OpenSDA - CDC Serial Port (http://www.pemicro.com/opensda) (COM12)
I D Processors
% Sound, video and game controllers
& Storage controllers
1M System devices
»-§ Universal Serial Bus controllers

N

Figure 5 OpenSDA Virtual Port

Description

The example is preconfigured in the following way. FRDM-32XSG-EVB board is configured in
GendeXtremeSwitch component, see Figure 7. SPI settings are configured separately in
SPIMaster_LDD component, see Figure 8 and in inherited CSpinl component, see Figure 9.
All components can be accessed in component tree, see Figure 6.

4 [Components
4 = Referenced_Components
- 1) TUL:TimerUnit_LDD
. @ SML:SPIMaster_LDD[SPImaster)
4 @ G4 X51:Gend eXtremeSwitch
@J RSTEPRinl:BitIO_LDD
@ CLEL:PWM_LDD
4 SPI_Devicel:5P1_Device
8 CSpinl:Bitl0_LDD
M Init
M| Deinit
M GetQuickStatus
M GetChannelStatus

Figure 6 Component Tree

Channels 1 and 3 are enabled and configured in Gen4eXtremeSwitch component properties,
see Figure 7. Both channels are enabled by default with PWM duty set to maximum value (256).
Watchdog timeout period is set to 128 ms. Make sure that if you modify the project, you still hold
this watchdog period. All other features are set to default values except pin selection which
follows Error! Reference source not found..

Component Mame
5PI Configuration
4 Global Configuration
RSTE Pin
External Clock Frequency
CLK Pin
Watchdog Timeout
- Direct Input Control
» Current, Violtage and Tempe
4 Devices
4 Devicel
Device Model
S0A Mode
Owerternperature Warning
HID Selection
OCHI Type
Global PWM Duty Cycle
4 Channels
4 Outputl
4 PWM Output Coni
Global PWM
Channel Duty ©
Phase Selectior
Pulse Skipping
Slew Rate Presc
Output Initial 5
Direct Input Conti
4 Open Load
Open Load LED
OLOM Deglitch
4 Owercurrent
QCLO Threshol
Advanced Curr
Short QCHI
Mo OCHI
- Qutput2
> Dutput3
: Dutputd
> Qutput5
» Qutputb
Auto Initialization

G4x51
Parallel 5PI

ADCO_SE6/ADCL_SE1/ADCT_DP1/...
50000 D
PTE2S/FTPO_CH1/12C0_SDAEWI... PTE2S/FTMO_CHIL/T2C0_SDAEWM...
128 ms
Dizabled
Disabled
1

MIC17XSF500

Single read

115°C

Dizabled

Default

0 D

Enabled Corresponds to channel with index...

Disabled

256 D
0

Disabled

1

On

Dizabled

Dizabled
a4 us

Low

Disabled

Dizabled

Disabled

Dizabled Channel disabled.
Enabled Corresponds to channel with index...
Dizabled Channel disabled.
Disabled Channel disabled.
Dizabled Channel disabled.

yes

Figure 7 G4XS Component Settings

SPI setting involves pin selection (MISO, MOSI, CLK and CSB). The first three pins are
configured in SPIMaster_LDD, see Figure 8 and the last one is configured in CSPin
component, see Figure 9, which is inherited by SPI_Device component.

Device
Interrupt service/event
4 Settings
4 Input pin
Pin
4 OQutput pin
Pin
4 Clock pin
Pin
Chip select list
4 Attribute set list
4 Attribute set 0
Width
MSB first
Clock polarity
Clock phase
Parity
Chip select toggling
Clock rate index
Delay after transfer index
CSto CLK delay index
CLE to C5 delay index
Clock rate
Delay after transfer
CSto CLK delay
CLK to C5 delay
4 Initialization
Auto initialization

SPI0
Enabled

Enabled

PTD3/5PI0_SIN/UARTO_TX/FTMO_CH3/T2C0_SDA

Enabled
CMPO_INO,/PTC6/LLWU_P10,/SPI0_SOUT/PDB0_EXTRG,/UARTO_RX/T.

PTCS/LLWU_PS/SPIO_SCK/LPTMRO_ALT2/CMPO_QUT/FTMO_CH2
a
1

0667572 ps
0190735 ps
0190735 ps
0190735 ps

Figure 8 SPI Master Component Settings

Pin for /O
Direction
4 Initialization
Init. directicn
Init. value
Auto initialization

ADC1_SEE/PTDE/LLWU_P15/SPI0_PCS3/UARTO_RX/FTMO_CHO/FT...

o
T

Figure 9 Chip Select Pin Settings

In order to be able to print status information, ConsolelO component is used. This component
encapsulates UART communication protocol. UART settings can be accessed through inherited

Serial_LDD component, see Figure 10.

4 [= Components
- = Referenced_Components
- i Pinsl:PinSettings
. B3 G4X51:GendeXtremeSwitch
4) C<I01:ConsolelD
@ 101:5enal_LDD
» = PDD

Figure 10 ConsolelO Component Tree

Receiver and transmitter port selection and baud rate value is in Figure 11.

Device UARTO
Interrupt service/event Disabled
4 Settings
Data width & bits
Parity Mone
Baud rate 115200 baud
4 Receiver Enabled
RaxD PTE16/UARTO_RX/FTM_CLEINZ/EWM_IM
4 Transmitter Enabled
TxD PTE17/UARTO_TX/FTM_CLEIMN1/EWM_OUT b

4 Initialization

Auto initialization YES

Figure 11 ConsolelO Component Settings

Implementation itself is quite straightforward. All of the implemented functions in main.c (Figure
12) are responsible for parsing selected status register. The result is printed to the console.

Functions implement the following logic.

1. Fetch content of the selected status register.
2. Parse obtained value with use of predefined macros.
3. Take action (print to console or something else) if some flag is or is not present.

—int main(wvoid)
/*lint -restore Enable MISRA rule (6.3) checking. */

1

* Write your local variable definition here */

J*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! *%%/
PE_low level init()};
'*** End of Processor Expert internal initialization.

printf("32eXtremeSwitchn™);

if (G4XS1_Init(NULL) == ERR OK) {
printf("Initialization was successful.\n™);

¥
else {

printf({"Initialization failed.\n"};

b

ParseDeviceID();
Parsel0StatusDatal);

while (1) {
printf({"\n<G4Xs Status Report:inin");

PrintStatusRegisters();

ParseQuickStatusDatal);
ParseChannelStatusData();
ParseDeviceStatusData();

for (uint8 t i =@; i « 48; iH+) { /* waits for 2 seg */
WaitMs(1@);
G4x51_FeedWatchdog();

h
b

Figure 12 Content of main.c

Functions ParseDevicelD() and ParselOStatusData() are called just once. The first one gives
information about device type, family and development design status. The second gives
information whether channel is on or off.

The rest of functions are called in infinite loop to provide real-time status report (for all enabled
channels). Function ParseQuickStatusData() gives overall information for all channels,
ParseChannelStatusData() expands this information with specific status for each channel and
ParseDeviceStatusData() informs about device state and condition.

Import the example project

Pre-requisites such as needed components are assumed to be imported already. If that is
correct, you can approach to importing of the example project.

In KDS click on the File / Import.

Choose General / Existing Projects into Workspace.

Click Browse to select root directory with your downloaded example projects.

Select project named G4XS KV10Z XSG ParseStatusData and click Finish to
complete the process.

5. Now the example project should be copied to your workspace and ready to run.

E A

Build and Debug

In order to build and run the project you need to generate code at first. Then you can build the
project usual way. If the build is successful, debug and run the project.

