MCIMX8ULP-EVK9 Board User Manual

Rev. 1 — 25 August 2023

**User manual** 

#### **Document information**

| Information | Content                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------|
| ,           | MCIMX8ULP-EVK9-UM, MCIMX8ULP-EVK9, i.MX 8ULP, MCIMX8ULP-EVK9BB, MX8ULP-<br>EVK9SOM, base board, SOM board                  |
|             | MCIMX8ULP-EVK9 is a design and evaluation platform based on NXP i.MX 8ULP application processor (9.4 mm x 9.4 mm package). |



MCIMX8ULP-EVK9 Board User Manual

### 1 Overview

MCIMX8ULP-EVK9 is a design and evaluation platform based on the NXP i.MX 8ULP application processor (9.4 mm x 9.4 mm package).

MCIMX8ULP-EVK9 is designed as a system-on-module (SOM) board (MX8ULP-EVK9SOM) that connects to an associated base board (MCIMX8ULP-EVK9BB).

The SOM board provides 2 GB LPDDR4 memory, 32 MB octal SPI NOR flash memory and 8 MB octal SPI pSRAM on real-time processor domain (RTD), 64 MB octal SPI NOR flash memory on application processor domain (APD), 32 GB eMMC memory, and an NXP PCA9460A power management IC (PMIC).

The base board provides other capabilities, including an M.2 Key-E slot for Wi-Fi/Bluetooth based on NXP IW416, an audio codec, multiple sensors, a 10/100 Mbit/s Ethernet RJ45 connector, a mini-SAS connector for camera, two USB 2.0 OTG with Type-C connectors, an HDMI connector, and an alternative MIPI display connector.

In addition, MCIMX8ULP-EVK9 facilitates software development with the ultimate goal of faster time to market, by supporting operating systems, including Linux, Android, and FreeRTOS.

For information on how to set up and boot MCIMX8ULP-EVK9, see *i.MX* 8ULP Evaluation Kit 9 Quick Start Guide provided in the MCIMX8ULP-EVK9 hardware kit.

This document provides details about MCIMX8ULP-EVK9 interfaces, power supplies, clocks, connectors, jumpers, push and slide buttons, DIP switch, and LEDs.

### 1.1 Acronyms

Table 1 lists the acronyms used in this document.

| Acronym | Description                                         |
|---------|-----------------------------------------------------|
| ADC     | Analog-to-Digital Converter                         |
| APD     | Application processor domain                        |
| BCU     | Board Control Utilities                             |
| CC      | Configuration channel                               |
| CSI-2   | Camera serial interface - 2                         |
| DAC     | Digital-to-Analog Converter                         |
| DFP     | Downstream-Facing Port                              |
| DIP     | Dual inline package                                 |
| DNP     | Do not populate                                     |
| dps     | Degrees per second                                  |
| DRP     | Dual-Role Power                                     |
| DSI     | Display serial interface                            |
| EEPROM  | Electrically erasable programmable read-only memory |
| FD      | Flexible data-rate                                  |
| FlexCAN | Flexible Controller Area Network                    |
| HS      | High-speed                                          |
| I2C     | Inter-Integrated Circuit                            |

Table 1. Acronyms

© 2023 NXP B.V. All rights reserved.

MCIMX8ULP-EVK9 Board User Manual

| I2SInter-IC SoundIoTInternet of ThingsLDOLow-dropout regulatorLEDLight-emitting diodeLPDDR4Low-Power Double Data Rate ControllerLPI2CLow-Power Inter-Integrated CircuitLPUARTLow-Power Universal Asynchronous Receiver/TransMACMedium access controlMIPIMobile Industry Processor InterfaceMPSSEMultiprotocol synchronous serial engineNTCNegative temperature coefficient | imitter                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| LDOLow-dropout regulatorLEDLight-emitting diodeLPDDR4Low-Power Double Data Rate ControllerLPI2CLow-Power Inter-Integrated CircuitLPUARTLow-Power Universal Asynchronous Receiver/TransMACMedium access controlMIPIMobile Industry Processor InterfaceMPSSEMultiprotocol synchronous serial engine                                                                          | mitter                              |  |
| LEDLight-emitting diodeLPDDR4Low-Power Double Data Rate ControllerLPI2CLow-Power Inter-Integrated CircuitLPUARTLow-Power Universal Asynchronous Receiver/TransMACMedium access controlMIPIMobile Industry Processor InterfaceMPSSEMultiprotocol synchronous serial engine                                                                                                  | smitter                             |  |
| LPDDR4Low-Power Double Data Rate ControllerLPI2CLow-Power Inter-Integrated CircuitLPUARTLow-Power Universal Asynchronous Receiver/TransMACMedium access controlMIPIMobile Industry Processor InterfaceMPSSEMultiprotocol synchronous serial engine                                                                                                                         | smitter                             |  |
| LPI2CLow-Power Inter-Integrated CircuitLPUARTLow-Power Universal Asynchronous Receiver/TransMACMedium access controlMIPIMobile Industry Processor InterfaceMPSSEMultiprotocol synchronous serial engine                                                                                                                                                                    | mitter                              |  |
| LPUART       Low-Power Universal Asynchronous Receiver/Trans         MAC       Medium access control         MIPI       Mobile Industry Processor Interface         MPSSE       Multiprotocol synchronous serial engine                                                                                                                                                    | smitter                             |  |
| MAC     Medium access control       MIPI     Mobile Industry Processor Interface       MPSSE     Multiprotocol synchronous serial engine                                                                                                                                                                                                                                   | smitter                             |  |
| MIPI     Mobile Industry Processor Interface       MPSSE     Multiprotocol synchronous serial engine                                                                                                                                                                                                                                                                       |                                     |  |
| MPSSE Multiprotocol synchronous serial engine                                                                                                                                                                                                                                                                                                                              |                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                            |                                     |  |
| NTC Negative temperature coefficient                                                                                                                                                                                                                                                                                                                                       |                                     |  |
| <b>o</b> 1                                                                                                                                                                                                                                                                                                                                                                 |                                     |  |
| OTG On-The-Go                                                                                                                                                                                                                                                                                                                                                              |                                     |  |
| PMIC Power management integrated circuit                                                                                                                                                                                                                                                                                                                                   | Power management integrated circuit |  |
| PMT Power Measurement Tool                                                                                                                                                                                                                                                                                                                                                 | Power Measurement Tool              |  |
| pSRAM Pseudo static random-access memory                                                                                                                                                                                                                                                                                                                                   |                                     |  |
| RTC Real-time clock                                                                                                                                                                                                                                                                                                                                                        |                                     |  |
| RTD Real-time processor domain                                                                                                                                                                                                                                                                                                                                             |                                     |  |
| RTOS Real-time operating system                                                                                                                                                                                                                                                                                                                                            |                                     |  |
| SAI Synchronous Audio Interface                                                                                                                                                                                                                                                                                                                                            |                                     |  |
| SAS Serial attached SCSI                                                                                                                                                                                                                                                                                                                                                   | Serial attached SCSI                |  |
| SCSI Small Computer System Interface                                                                                                                                                                                                                                                                                                                                       |                                     |  |
| SDRAM Synchronous dynamic random-access memory                                                                                                                                                                                                                                                                                                                             |                                     |  |
| SOM System-on-module                                                                                                                                                                                                                                                                                                                                                       |                                     |  |
| SPDIF Sony/Philips Digital Interface                                                                                                                                                                                                                                                                                                                                       |                                     |  |
| SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                                                            |                                     |  |
| TFT Thin film transistor                                                                                                                                                                                                                                                                                                                                                   | Thin film transistor                |  |
| UART Universal Asynchronous Receiver/Transmitter                                                                                                                                                                                                                                                                                                                           |                                     |  |
| UFP Upstream-Facing Port                                                                                                                                                                                                                                                                                                                                                   |                                     |  |
| USB Universal Serial Bus                                                                                                                                                                                                                                                                                                                                                   |                                     |  |
| uSDHC Ultra Secured Digital Host Controller                                                                                                                                                                                                                                                                                                                                |                                     |  |
| WLAN Wireless local area network                                                                                                                                                                                                                                                                                                                                           |                                     |  |

#### **1.2 Related documentation**

<u>Table 2</u> lists and explains the additional documents and resources that you can refer to for more information on the board. Some of the documents listed below may be available only under a non-disclosure agreement (NDA). To request access to these documents, contact your local field applications engineer (FAE) or sales representative.

### MCIMX8ULP-EVK9 Board User Manual

| Document                                                            | Description                                                                                                                                                                                                                                                        | Link / how to obtain                         |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| i.MX 8ULP Evaluation Kit 9 Quick<br>Start Guide                     | Provides information on how to set up and boot MCIMX8ULP-EVK9.                                                                                                                                                                                                     | Available in the MCIMX8ULP-EVK9 hardware kit |  |
| i.MX 8ULP Processor Reference<br>Manual                             | Provides a detailed description about the i.MX 8ULP processor and its features, including memory maps, power supplies, and clocks.                                                                                                                                 | Contact NXP FAE / sales<br>representative    |  |
| i.MX 8ULP Applications Processor—<br>Consumer Products Data Sheet   | Provides information about electrical characteristics, hardware design                                                                                                                                                                                             |                                              |  |
| i.MX 8ULP Applications Processor—<br>Industrial Products Data Sheet | considerations, and ordering information.                                                                                                                                                                                                                          |                                              |  |
| i.MX 8ULP Hardware Developer's<br>Guide                             | Provides information about board layout<br>recommendations and design checklists to<br>ensure first-pass success and to avoid board<br>bring-up problems. It is intended to help<br>hardware engineers design and test their<br>i.MX 8ULP processor-based designs. |                                              |  |
| i.MX 8ULP Errata                                                    | Lists the details of all known silicon errata for i.MX 8ULP.                                                                                                                                                                                                       |                                              |  |
| MCIMX8ULP-EVK9 design files                                         | Board schematics, assembly layout                                                                                                                                                                                                                                  |                                              |  |
| Board Control Utilities Release Notes                               | Provides release information about BCU software.                                                                                                                                                                                                                   | GitHub                                       |  |
| i.MX Power Measurement Tool<br>Application Note (AN13119)           | Describes i.MX Power Measurement Tool (PMT).                                                                                                                                                                                                                       | AN13119.pdf                                  |  |
| PTN5150A Product Data Sheet                                         | Provides information about electrical<br>characteristics, hardware design<br>considerations, and ordering information.                                                                                                                                             | PTN5150A.pdf                                 |  |
| TJA1057 Data Sheet                                                  | Provides information about electrical<br>characteristics, hardware design<br>considerations, and ordering information.                                                                                                                                             | TJA1057.pdf                                  |  |
| i.MX Linux User's Guide                                             | Describes how to build and install the i.MX<br>Linux board support package (BSP) on the<br>i.MX platform. It also covers special i.MX<br>features and how to use them.                                                                                             | IMX_LINUX_USERS_GUIDE.pdf                    |  |

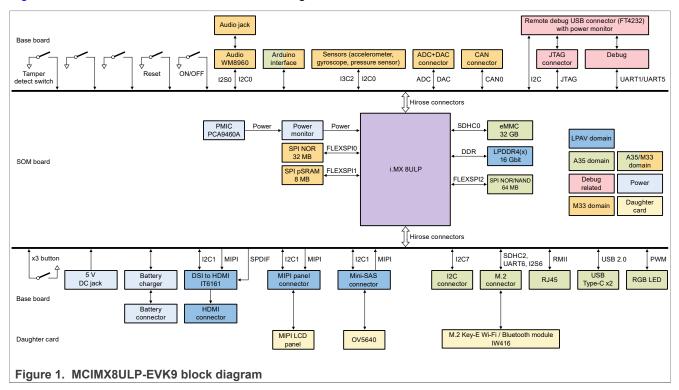
#### Table 2. Related documentation

### 1.3 Kit contents

Table 3 lists the items included in the MCIMX8ULP-EVK9 hardware kit.

#### Table 3. Kit contents

| Item                                                                                                | Quantity |
|-----------------------------------------------------------------------------------------------------|----------|
| MCIMX8ULP-EVK9 hardware assembled with two separate boards, MX8ULP-<br>EVK9SOM and MCIMX8ULP-EVK9BB | 1        |
| 5 V DC, 5 A power adapter with 2.1 mm x 5.5 mm plug                                                 | 1        |
| USB Type-A to USB micro-B cable                                                                     | 1        |
| USB Type-A to USB Type-C cable                                                                      | 1        |
| Quick Start Guide                                                                                   | 1        |


MCIMX8ULP-EVK9-UM

© 2023 NXP B.V. All rights reserved.

MCIMX8ULP-EVK9 Board User Manual

### 1.4 Block diagram

Figure 1 shows the MCIMX8ULP-EVK9 block diagram.



#### **1.5 Board pictures**

Figure 2 shows the top-side view of MCIMX8ULP-EVK9, with SOM board (MX8ULP-EVK9SOM) and base board (MCIMX8ULP-EVK9BB) highlighted.

Figure 2. Board top-side view

### MCIMX8ULP-EVK9 Board User Manual

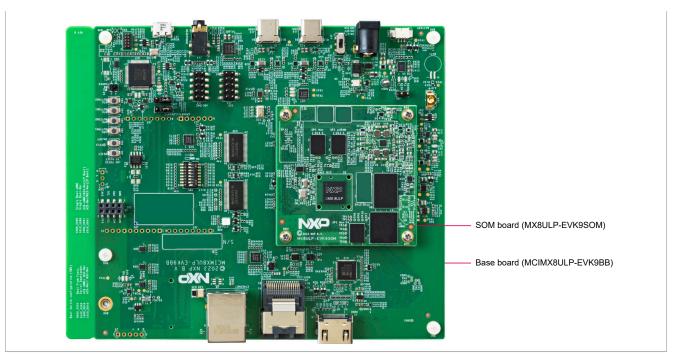



Figure 3 shows the bottom-side view of MCIMX8ULP-EVK9.

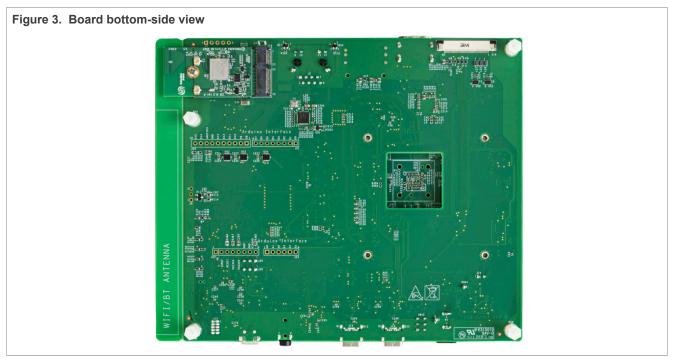
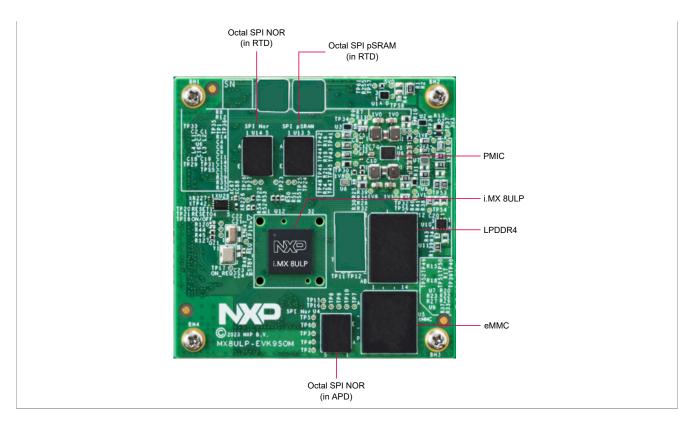




Figure 4 highlights important SOM board components.

Figure 4. SOM board components

### MCIMX8ULP-EVK9 Board User Manual



### 1.6 Board features

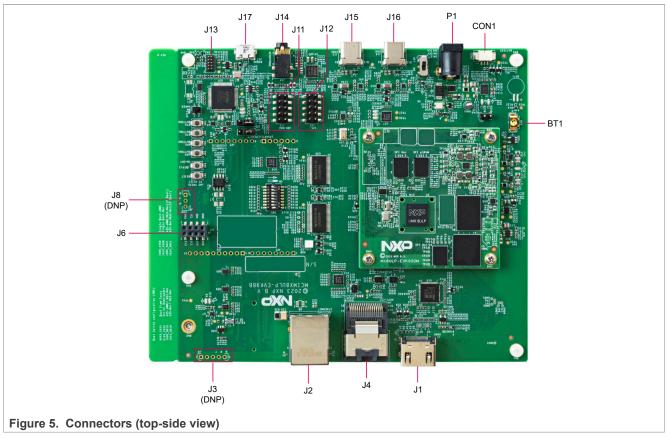
Table 4 lists the features of MCIMX8ULP-EVK9.

| Table 4. MCIMX8ULP-EVK9 features | Table 4. | MCIMX8UL | P-EVK9 | features |
|----------------------------------|----------|----------|--------|----------|
|----------------------------------|----------|----------|--------|----------|

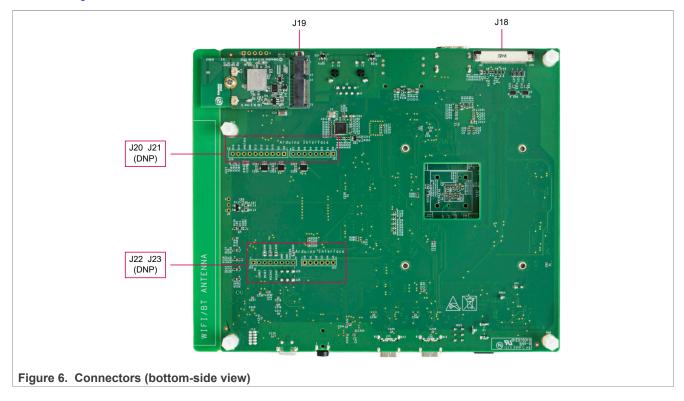
| Board feature                | Target processor feature used | Description                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processor                    |                               | NXP i.MX 8ULP processor (part number: MIMX8UD7DVK10SA,<br>package size: 9.4 mm x 9.4 mm) based on up to two Arm Cortex-A35<br>cores, each running at 800 MHz frequency, and one Arm Cortex-M33F<br>core running at 216 MHz nominal (RUN) frequency.<br><b>Note:</b> For details on the i.MX 8ULP processor, see i.MX 8ULP<br>Processor Reference Manual. |
| LPDDR4/<br>LPDDR4x<br>memory | LPDDR4 controller             | 2 GB LPDDR4 SDRAM                                                                                                                                                                                                                                                                                                                                        |
| eMMC memory                  | uSDHC0 controller             | 32 GB eMMC NAND flash memory                                                                                                                                                                                                                                                                                                                             |
| FlexSPI interface            | FlexSPI0 controller           | 32 MB octal SPI NOR flash memory                                                                                                                                                                                                                                                                                                                         |
|                              | FlexSPI1 controller           | 8 MB octal SPI pSRAM memory                                                                                                                                                                                                                                                                                                                              |
|                              | FlexSPI2 controller           | 64 MB octal SPI NOR flash memory                                                                                                                                                                                                                                                                                                                         |
| Ethernet interface           | ENET controller               | 10BASE-T / 100BASE-TX RMII Ethernet PHY accessible through an RJ45 jack                                                                                                                                                                                                                                                                                  |
| USB interface                | USB0 controller (USB OTG)     | USB 3.1 Type-C connector                                                                                                                                                                                                                                                                                                                                 |
|                              | USB1 controller (USB OTG)     | USB 3.1 Type-C connector                                                                                                                                                                                                                                                                                                                                 |

### MCIMX8ULP-EVK9 Board User Manual

| Board feature            | Target processor feature                               | Description                                                                                                                                                                                                                                                                 |  |  |
|--------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          | used                                                   |                                                                                                                                                                                                                                                                             |  |  |
| CAN interface            | FlexCAN controller                                     | HS CAN transceiver with option to connect (populate) a 3-pin CAN header                                                                                                                                                                                                     |  |  |
| Display interface        | MIPI-DSI host controller                               | One of the following two options can be used:<br>• MIPI-to-HDMI transmitter with an HDMI Type-A connector<br>• MIPI-DSI + touch connector                                                                                                                                   |  |  |
| Camera interface         | MIPI-CSI-2 host controller                             | Mini-SAS camera connector                                                                                                                                                                                                                                                   |  |  |
| I2C interface            | LPI2C0, LPI2C1, LPI2C7, and<br>PMIC0 controllers       | <ul> <li>LPI2C0, LPI2C1, LPI2C7, and PMIC0 buses from the i.MX 8ULP processor</li> <li>FTB bus from USB debug host (via USB-to-UART/MPSSE bridge)</li> <li>2x4-position I2C connector for remote I2C access</li> </ul>                                                      |  |  |
| Audio codec              | SAI0 controller                                        | One of the following two options can be used:<br>• Audio codec with an audio stereo headphone jack<br>• External codec connector                                                                                                                                            |  |  |
| Sensors                  | LPI2C0 controller                                      | <ul> <li>3-axis digital accelerometer</li> <li>3-axis digital accelerometer (G-sensor) / gyroscope</li> <li>I2C precision pressure sensor</li> </ul>                                                                                                                        |  |  |
| ADC/DAC                  | ADC1 and DAC0 controllers                              | 10-pin ADC/DAC header                                                                                                                                                                                                                                                       |  |  |
| M.2 connector            | SAI6, uSDHC2, LPUART6,<br>LPI2C7, and USB1 controllers | 75-pin, M.2 Key-E mini card connector having EAR00385 Wi-Fi +<br>Bluetooth card plugged in                                                                                                                                                                                  |  |  |
| Arduino<br>connectors    |                                                        | Arduino socket with four connectors (not populated by default)                                                                                                                                                                                                              |  |  |
| I/O expanders            |                                                        | Four I/O expanders to provide remote I/O expansion via the I2C bus interface                                                                                                                                                                                                |  |  |
| Debug interface          |                                                        | USB-to-UART/MPSSE bridge (with a USB debug connector) or a JTAG header for debugging the i.MX 8ULP processor                                                                                                                                                                |  |  |
| Boot<br>configuration    |                                                        | 8-pin DIP switch for controlling boot configuration                                                                                                                                                                                                                         |  |  |
| Power                    |                                                        | <ul> <li>The following power supply options are available:</li> <li>DC power jack for connecting 5 V external power</li> <li>Lithium-ion battery socket and battery charger</li> <li>USB micro-B connector</li> <li>Coin cell battery option (primary/secondary)</li> </ul> |  |  |
| Power monitoring         |                                                        | Five quad-channel power monitors for power and energy monitoring                                                                                                                                                                                                            |  |  |
| Clocks                   |                                                        | Six crystals/oscillators                                                                                                                                                                                                                                                    |  |  |
| Orderable part<br>number |                                                        | MCIMX8ULP-EVK9                                                                                                                                                                                                                                                              |  |  |


### Table 4. MCIMX8ULP-EVK9 features...continued

### **1.7 Connectors**


Figure 5 and Figure 6 show the MCIMX8ULP-EVK9 connectors.

MCIMX8ULP-EVK9-UM

### MCIMX8ULP-EVK9 Board User Manual



Note: In Figure 5, board-to-board connectors between base board and SOM board are hidden.



### MCIMX8ULP-EVK9 Board User Manual

#### <u>Table 5</u> describes the connectors available on the MCIMX8ULP-EVK9BB board.

#### Table 5. Base board connectors

| Part identifier | PCB label            | Connector type            | Description                                                                                                                                                                                                                                                                                                  | Reference section                                      |  |
|-----------------|----------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| BT1             | _                    | Coin cell battery holder  | Holder for ML414 size coin cell<br>battery. By default, no coin cell<br>battery is present in BT1. With a<br>coin cell battery, BT1 can be used<br>to produce LICELL_3V0 supply.<br><b>Note:</b> As an alternative, a lithium<br>coin cell battery BAT1 can be<br>populated to produce LICELL_3V0<br>supply. | Section 2.2                                            |  |
| P1              | DC5V                 | DC power jack             | 5 V power supply connector                                                                                                                                                                                                                                                                                   |                                                        |  |
| J2              | ETHERNET             | RJ45 jack                 | Ethernet connector                                                                                                                                                                                                                                                                                           | Section 2.7                                            |  |
| J15             | USB0                 | USB 3.1 Type-C            | USB0 Type-C connector                                                                                                                                                                                                                                                                                        | Section 2.8                                            |  |
| J16             | USB1                 | connector                 | USB1 Type-C connector                                                                                                                                                                                                                                                                                        |                                                        |  |
| J8 (DNP)        | CAN                  | 1x3-pin header            | CAN connector                                                                                                                                                                                                                                                                                                | Section 2.9                                            |  |
| J1              | HDMI                 | 1x19-pin connector        | HDMI Type-A connector                                                                                                                                                                                                                                                                                        | Section 2.10                                           |  |
| J18             | – 1x40-pin connector |                           | MIPI-DSI + touch connector                                                                                                                                                                                                                                                                                   |                                                        |  |
| J4              | MIPI-CSI             | 2x18-pin connector        | Mini-SAS camera connector                                                                                                                                                                                                                                                                                    | Section 2.11                                           |  |
| J6              | I2C                  | 2x4-position receptacle   | I2C connector                                                                                                                                                                                                                                                                                                | Section 2.12                                           |  |
| J12             | 12S                  | 2x5-pin header            | External codec connector                                                                                                                                                                                                                                                                                     | Section 2.13                                           |  |
| J14             | HEADPHONE            | 3.5 mm audio jack         | Audio headphone connector                                                                                                                                                                                                                                                                                    |                                                        |  |
| J11             | ADC/DAC              | 2x5-pin header            | 12-bit ADC/DAC connector                                                                                                                                                                                                                                                                                     | Section 2.15                                           |  |
| J19             | – 75-pin connector   |                           | M.2 Key-E mini card connector                                                                                                                                                                                                                                                                                | Section 2.16                                           |  |
| J3 (DNP)        | – 1x5-pin header     |                           | HiFi4 UART debug connector                                                                                                                                                                                                                                                                                   |                                                        |  |
| J20 (DNP)       | Arduino              | 1x10-pin header           | Arduino connector (A35 domain)                                                                                                                                                                                                                                                                               | Section 2.17                                           |  |
| J21 (DNP)       | Interface            | 1x8-pin header            | Arduino connector (M33 domain)                                                                                                                                                                                                                                                                               |                                                        |  |
| J22 (DNP)       |                      | 1x8-pin header            | Arduino connector (power and reset)                                                                                                                                                                                                                                                                          | -                                                      |  |
| J23 (DNP)       |                      | 1x6-pin header            | Arduino connector (M33 domain)                                                                                                                                                                                                                                                                               |                                                        |  |
| J17             | DEBUG                | USB 2.0 micro-B connector | USB debug connector                                                                                                                                                                                                                                                                                          | Section 2.20.3                                         |  |
| J13             | JTAG                 | 2x5-pin header            | JTAG connector                                                                                                                                                                                                                                                                                               | Section 2.20.4                                         |  |
| JP1             | -                    | 2x40-position receptacle  | Board-to-board connectors                                                                                                                                                                                                                                                                                    | For more information                                   |  |
| JP2             | -                    | 2x40-position receptacle  | for base board – SOM board<br>interconnection                                                                                                                                                                                                                                                                | on these connectors,<br>see MCIMX8ULP-<br>EVK9BB board |  |
| JP3             | -                    | 2x40-pin header           |                                                                                                                                                                                                                                                                                                              |                                                        |  |
| CON1            | BATTERY              | Wire-to-board connector   | Connector for external battery                                                                                                                                                                                                                                                                               | schematics.                                            |  |

Table 6 describes the connectors available on the MX8ULP-EVK9SOM board.

### MCIMX8ULP-EVK9 Board User Manual

| Part identifier | PCB label | Connector type           | Description | Reference section                       |
|-----------------|-----------|--------------------------|-------------|-----------------------------------------|
| JP1             | _         | 2x40-pin header          |             | For more information                    |
| JP2             | _         | 2v/0_nin header          |             | on these connectors,<br>see MX8ULP-EVK9 |
| JP3             | -         | 2x40-position receptacle |             | SOM board schematics                    |

#### Table 6. SOM board connectors

### 1.8 Jumpers

Figure 7 shows the MCIMX8ULP-EVK9 jumpers. All the jumpers are placed on the MCIMX8ULP-EVK9BB board.



#### Table 7 describes the MCIMX8ULP-EVK9 jumpers.

| Part identifier | PCB label | Jumper type    | Description                                                                                                                                                                                                                                           | Reference<br>section |
|-----------------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| J24             | -         | 1x2-pin header | <ul> <li>Coin cell battery supply jumper:</li> <li>Open (default setting): Coin cell battery supply LICELL_3V0 is unavailable.</li> <li>Shorted: Coin cell battery supply LICELL_3V0 is available.</li> </ul>                                         | Section 2.2          |
| J25             | LPUART1/  | 1x3-pin header | FT4232H channel D connection jumpers:                                                                                                                                                                                                                 | Section 2.20         |
| J26             | LPUART7   | 1x3-pin header | <ul> <li>Pins 1-2 shorted (default setting): FT4232H channel D is connected to LPUART1 (UART for Arm Cortex-M33F core, UARTM).</li> <li>Pins 2-3 shorted: FT4232H channel D is connected to LPUART7 (UART for Arm Cortex-A35 core, UARTA).</li> </ul> |                      |

#### Table 7. MCIMX8ULP-EVK9 jumpers

MCIMX8ULP-EVK9 Board User Manual

### 1.9 Push and slide buttons

Figure 8 shows the MCIMX8ULP-EVK9 push and slide buttons. All these buttons are placed on the MCIMX8ULP-EVK9BB board.

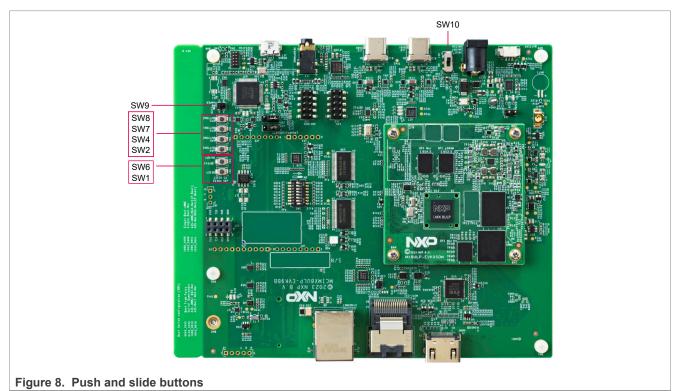



Table 8 describes the MCIMX8ULP-EVK9 push and slide buttons.

#### Table 8. MCIMX8ULP-EVK9 push and slide buttons

| Part identifier | PCB label | Button type | Name/function              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|-----------|-------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SW1             | RESET     | Push button | Reset button               | Press and hold SW1 for more than 8 seconds to<br>assert reset to PMIC power outputs except LDO_<br>SNVS (PMIC PCA9460A is present on the SOM<br>board).<br>SW1 is directly connected to the PMIC. The i.MX<br>8ULP processor gets turned off immediately and<br>reinitiates a boot cycle from the OFF state.                                                                                                                                                                                                                                                                                                                                                                  |
| SW6             | ON/OFF    |             | Processor ON/OFF<br>button | <ul> <li>When pressed, SW6 generates an input signal to change the power state of the i.MX 8ULP processor (that is, ON or OFF) from the PMIC.</li> <li>SW6 is connected to the ONOFF pin of the i.MX 8ULP processor. It changes the power state of the processor as follows:</li> <li>In the ON state, if SW6 is held longer than the debounce time, the power-off interrupt is generated. If it is held longer than the defined max timeout, the state changes from ON to OFF, and the PMIC_ON_REQ signal is sent to turn off the power outputs of the PMIC.</li> <li>In the OFF state, if SW6 is held longer than the OFF-to-ON time, the state changes from OFF</li> </ul> |

#### MCIMX8ULP-EVK9 Board User Manual

| Part identifier | PCB label        | Button type  | Name/function             | Description                                                                                                                                                                              |
|-----------------|------------------|--------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                  |              |                           | to ON, and the PMIC_ON_REQ signal is sent to turn on the power outputs of the PMIC.                                                                                                      |
| SW2             | APD<br>BUTTON1   |              | User buttons              | Software-defined, connected to application processor domain. SW2 and SW4 are connected                                                                                                   |
| SW4             | APD<br>BUTTON2   |              |                           | to the processor pins PTE17 and PTF26, respectively.                                                                                                                                     |
| SW7             | RTD<br>BUTTON1   |              |                           | Software-defined, connected to real-time<br>processor domain. SW7 and SW8 are connected                                                                                                  |
| SW8             | RTD<br>BUTTON2   |              |                           | to the processor pins PTB13 and PTB12, respectively.                                                                                                                                     |
| SW9             | TAMPER           |              | Tamper detect button      | SW9 is connected to the TAMPER0 pin of the i.MX<br>8ULP processor. A tamper is detected when a<br>change happens in the voltage level of this pin.                                       |
|                 |                  |              |                           | When SW9 is pressed (the voltage level of the TAMPER0 pin changes from 1 to 0) or released (the voltage level of the pin changes from 0 to 1), a tamper signal is sent to the processor. |
| SW10            | ON/OFF<br>SWITCH | Slide button | Input power ON/OFF button | Button for controlling 5 V DC input supply                                                                                                                                               |

#### Table 8. MCIMX8ULP-EVK9 push and slide buttons...continued

### 1.10 DIP switch

MCIMX8ULP-EVK9 has an 8-pin dual inline package (DIP) switch (SW5) for controlling the i.MX 8ULP boot mode. SW5 is placed on the MCIMX8ULP-EVK9BB board.

Each pin of the DIP switch has two positions:

- OFF position (pin has value 0)
- ON position (pin has value 1)

A DIP switch pin can be moved manually from OFF position to ON position and vice versa.

Figure 9 shows the MCIMX8ULP-EVK9 DIP switch.

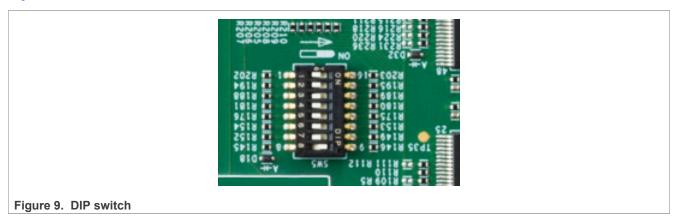



Table 9 describes the MCIMX8ULP-EVK9 DIP switch settings.

#### MCIMX8ULP-EVK9 Board User Manual

| SW5[8]<br>(MSB) | SW5[7]         | SW5[6]        | SW5[5]        | SW5[4]   | SW5[3]   | SW5[2]   | SW5[1]<br>(LSB)  | Boot mode                                          |
|-----------------|----------------|---------------|---------------|----------|----------|----------|------------------|----------------------------------------------------|
| BOOT_<br>MODE1  | BOOT_<br>MODE0 | BT1_<br>CFG14 | BT1_<br>CFG13 | BT0_CFG4 | BT0_CFG3 | BT0_CFG1 | BT0_CFG0         |                                                    |
| 0               | 0              | x             | x             | x        | x        | x        | x                | Boot from<br>Fuses                                 |
| 0               | 1              | x             | x             | x        | x        | x        | x <sup>[1]</sup> | Serial<br>Download                                 |
| 1               | 0              | 0             | 0             | 0        | 0        | 1        | 0                | A35 - eMMC /<br>M33 - SPI NOR                      |
| 1               | 0              | 1             | 0             | 0        | 0        | 1        | 0                | A35 - SPI<br>NOR / M33 -<br>SPI NOR                |
| 1               | 0              | 0             | 0             | x        | x        | 0        | 0                | Single Boot -<br>eMMC (default<br>setting)         |
| 1               | 0              | 1             | 0             | x        | x        | 0        | 0                | Single Boot -<br>SPI NOR                           |
| 1               | 0              | 0             | 0             | 0        | 0        | x        | 1                | A35 - eMMC /<br>M33 - SPI NOR<br>(Low Power)       |
| 1               | 0              | 1             | 0             | 0        | 0        | x        | 1                | A35 - SPI<br>NOR / M33 -<br>SPI NOR (Low<br>Power) |

#### Table 9. Boot configuration settings

[1] Set to OFF when the fuse (BT\_FUSE\_SEL) is not blown.

The default setting for SW5[1:8] is 00000001. With this setting, both A35 and M33 cores boot from eMMC.

**Note:** For more details on the i.MX 8ULP boot modes and boot mode configurations, see the "System Boot Flow" chapter in i.MX 8ULP Processor Reference Manual.

#### 1.11 LEDs

MCIMX8ULP-EVK9 provides numerous light-emitting diodes (LEDs) for monitoring system status. The information collected from the LEDs can be used for debugging purposes.

Figure 10 shows the MCIMX8ULP-EVK9 LEDs. All these LEDs are placed on the MCIMX8ULP-EVK9BB board.

### MCIMX8ULP-EVK9 Board User Manual

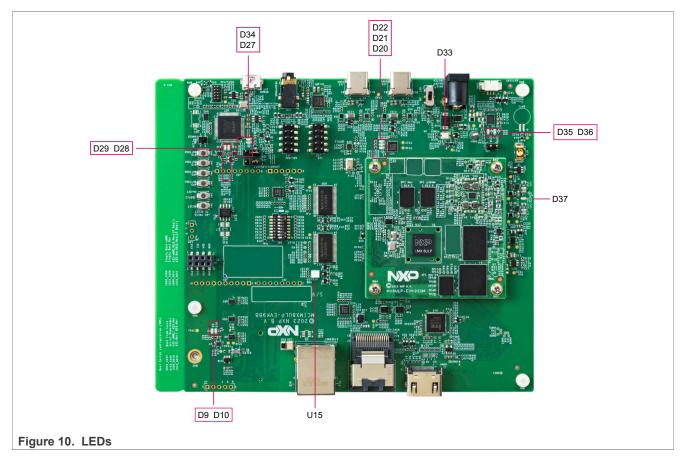



Table 10 describes the MCIMX8ULP-EVK9 LEDs.

#### Table 10. MCIMX8ULP-EVK9 LEDs

| Part identifier | LED color | Name/function             | Description (when LED is ON)                                                     |
|-----------------|-----------|---------------------------|----------------------------------------------------------------------------------|
| D9              | Green     | M.2 card WLAN<br>status   | M.2 card wireless LAN is operating correctly.                                    |
| D10             | Orange    | M.2 card Bluetooth status | M.2 card Bluetooth is operating correctly.                                       |
| D22             | Orange    | CPU power status          | CPU power mode 0                                                                 |
| D21             | Orange    |                           | CPU power mode 1                                                                 |
| D20             | Orange    |                           | CPU power mode 2                                                                 |
| D29             | Orange    | A35 UART                  | Arm Cortex-A35 core receives UART data from the host computer.                   |
| D28             | Green     |                           | Arm Cortex-A35 core sends UART data to the host computer.                        |
| D27             | Orange    | M33/A35 UART              | Arm Cortex-M33F / Arm Cortex-A35 core receives UART data from the host computer. |
| D34             | Green     |                           | Arm Cortex-M33F / Arm Cortex-A35 core sends UART data to the host computer.      |
| D33             | Green     | System power status       | System power supply is available.                                                |
|                 | Red       | Over-voltage status       | Over-voltage condition is detected.                                              |

15 / 50

### MCIMX8ULP-EVK9 Board User Manual

| Part identifier | LED color | Name/function                      | Description (when LED is ON)                                                                                                                                                                                                    |
|-----------------|-----------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D35             | Green     | Lithium-ion battery charger status | Battery charger is charging the lithium-ion battery.<br><b>Note:</b> A blinking LED indicates a bad lithium-ion battery.<br>The OFF status indicates that either the battery is fully<br>charged or the charger is not running. |
| D36             | Orange    |                                    | Battery charger is getting a valid AC input supply.                                                                                                                                                                             |
| D37             | Orange    | PER_3V3 supply status              | PER_3V3 supply is available.                                                                                                                                                                                                    |
| U15             | Blue      | RGB                                | Connected to the processor pin PTF10                                                                                                                                                                                            |
|                 | Red       |                                    | Connected to the processor pin PTF27                                                                                                                                                                                            |
|                 | Green     |                                    | Connected to the processor pin PTF20                                                                                                                                                                                            |

#### Table 10. MCIMX8ULP-EVK9 LEDs...continued

MCIMX8ULP-EVK9 Board User Manual

### 2 Functional description

This section contains the following subsections:

- Processor
- Board power supply
- <u>Clocks</u>
- LPDDR4/LPDDR4x memory
- eMMC memory
- FlexSPI interface
- Ethernet interface
- USB interface
- CAN interface
- Display interface
- Camera interface
- I2C interface
- Audio codec
- <u>Sensors</u>
- ADC/DAC
- M.2 connector and Wi-Fi/Bluetooth module
- <u>Arduino connectors</u>
- <u>I/O multiplexers</u>
- I/O expanders
- Board control and debug interface
- PCB information
- Board errata

#### 2.1 Processor

The NXP i.MX 8ULP family of processors features advanced implementation of the dual Arm Cortex-A35 cores, in addition to an Arm Cortex-M33F core. This combined architecture enables the device to run a rich operating system (such as Linux) on the Cortex-A35 core and an RTOS (such as FreeRTOS) on the Cortex-M33F core. It also includes a Fusion DSP for low-power audio and a HiFi4 DSP for advanced audio and machine learning applications.

The i.MX 8ULP processor provides a 32-bit LPDDR3/LPDDR4/LPDDR4X memory interface and several other interfaces for connecting peripherals, such as WLAN, Bluetooth, GPS, and displays. Also, these two coprocessors are connected to the Cortex-M33F core: PowerQuad and Casper.

MCIMX8ULP-EVK9 includes an i.MX 8ULP processor (MIMX8UD7DVK10SA) with this package information: 512 FCCSP, 9.4 mm x 9.4 mm, 0.4 mm pitch.

For more information about the processor, see the following documents:

- i.MX 8ULP Applications Processor—Consumer Products Data Sheet or i.MX 8ULP Applications Processor— Industrial Products Data Sheet
- i.MX 8ULP Processor Reference Manual

MCIMX8ULP-EVK9 Board User Manual

### 2.2 Board power supply

MCIMX8ULP-EVK9 is powered up with an external 5 V DC power supply, through the DC power jack P1 available on the base board. The 5 V power supply to the board can be turned on/off using a slide button SW10 connected to a P-channel MOSFET Q21.

The power supply devices on the board use the 5 V power to generate required power supplies for PMIC, board-to-board connectors, CAN transceiver, MIPI-to-HDMI transmitter, HDMI connector, USB connectors, pull-up resistors for power monitors, and other peripheral devices.

MCIMX8ULP-EVK9 also gets external power when it is connected to the host computer through the base board USB micro-B connector. This power is used for powering the FT4232H USB-to-UART/MPSSE bridge.

Figure 11 shows the MCIMX8ULP-EVK9 power supply diagram.

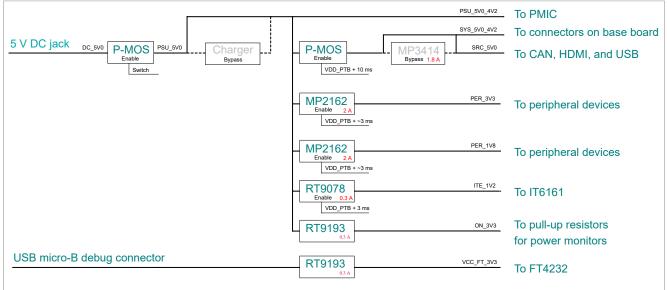



Figure 11. Power supply diagram

Table 11 describes the MCIMX8ULP-EVK9 power supplies.

**Note:** Unless specified explicitly, the part identifiers mentioned in <u>Table 11</u> correspond to the MCIMX8ULP-EVK9BB board.

| Power source                                       | Manufacturer and part number              | Power<br>supply                  | Description                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| External 5 V supply<br>through DC power<br>jack P1 | -                                         | DC_5V0 (5 V)                     | Supplies power to:<br>• P-channel MOSFET Q21<br>• Red (over-voltage) LED of red-green (D33) LED                                                                                                                                                                                                                                     |
| P-channel MOSFET<br>Q21                            | Alpha & Omega<br>Semiconductor<br>AON3419 | PSU_5V0 (5<br>V)                 | <ul> <li>Supplies power to:         <ul> <li>Green (system power status) LED of red-green (D33) LED</li> <li>Lithium-ion battery charger U38 if the R272 resistor is populated (not populated by default)</li> </ul> </li> <li>One of the two power source options (default option) for producing the PSU_5V0_4V2 supply</li> </ul> |
| Lithium-ion battery<br>charger U38                 | Monolithic Power<br>Systems MP2617B       | PSU_5V0_4<br>V2 (5 V / 4.2<br>V) | Supplies power to:                                                                                                                                                                                                                                                                                                                  |
| MCIMX8ULP-EVK9-UM                                  | All informat                              | ion provided in this documer     | t is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.                                                                                                                                                                                                                                                             |

#### Table 11. MCIMX8ULP-EVK9 power supplies

### MCIMX8ULP-EVK9 Board User Manual

| 1                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A9460A on the SOM board (through board-to-<br>inectors)<br>I MOSFET Q14<br>egulators U6, U22, U23, and U25                                                                                                                                                                                                                                                                                                    |
| wer to lithium-ion battery socket                                                                                                                                                                                                                                                                                                                                                                             |
| wer to D35 and D36 LEDs                                                                                                                                                                                                                                                                                                                                                                                       |
| power to voltage regulator U20<br>e two power supplies for Arduino header J22<br>lated)<br>e three power supplies for:<br>SI + touch connector J18<br>AS camera connector J4                                                                                                                                                                                                                                  |
| the HDMI_5V0 supply for powering HDMI<br>J1<br>power to USB host power control switches<br>J43<br>e two power supplies for CAN transceiver U24                                                                                                                                                                                                                                                                |
| wer to:<br>be-C connector J15<br>sistor on VBUS detection input signal to USB0<br>chip U41                                                                                                                                                                                                                                                                                                                    |
| wer to:<br>be-C connector J16<br>sistor on VBUS detection input signal to USB1<br>chip U40                                                                                                                                                                                                                                                                                                                    |
| hree power supplies for the MIPI-to-HDMI<br>J10                                                                                                                                                                                                                                                                                                                                                               |
| e two power source options for producing the<br>D supply<br>power to:<br>tch SW5<br>ower status LEDs D20, D21, and D22<br>ED U15 and PER_3V3 supply status LED D37<br>odec U48<br>ack J14<br>ometer sensor U29 and pressure sensor U34<br>CC logic chip U41 and USB1 CC logic chip<br>enector J6<br>o connector J20 (not populated)<br>SI I/O multiplexers U55, U56, and U62<br>emote control multiplexer U42 |
| en                                                                                                                                                                                                                                                                                                                                                                                                            |

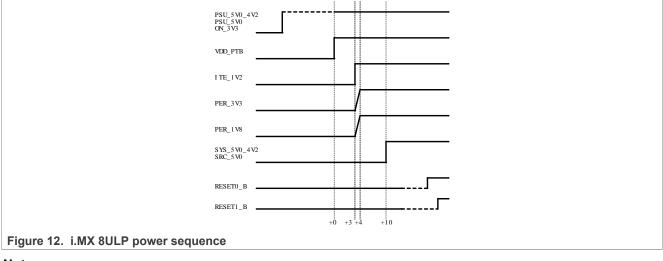
#### Table 11. MCIMX8ULP-EVK9 power supplies...continued

### MCIMX8ULP-EVK9 Board User Manual

### Table 11. MCIMX8ULP-EVK9 power supplies...continued

User manual

#### MCIMX8ULP-EVK9 Board User Manual


| Power source                                                                                                                       | Manufacturer and part number | Power<br>supply                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| External supply<br>through USB micro-B<br>connector J17                                                                            | -                            | VBUS_USB_<br>DBG                  | Supplies power to LDO regulator U45                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LDO regulator U45                                                                                                                  | Richtek Technology<br>RT9193 | VCC_FT_3V3<br>(3.3 V at 0.3<br>A) | <ul> <li>Supplies power to:</li> <li>LEDs D27, D28, D29, and D34</li> <li>I/O expanders U13 and U28</li> <li>USB-to-UART/MPSSE bridge U37</li> <li>USB-to-UART/MPSSE bridge EEPROM U44</li> <li>System ID EEPROM U1 (not populated)</li> <li>Power monitors on the SOM board (through board-to-<br/>board connectors)</li> <li>Pull-up resistors on I2C signals to the SOM board</li> <li>Supplies VCCA power to voltage translators U31, U32,<br/>and U33</li> </ul> |
| From coin cell battery<br>placed in BT1 holder<br>through jumper J24<br>(no coin cell battery<br>is present in BT1, by<br>default) | _                            | LICELL_3V0<br>(3 V)               | Can be used to produce LDO5_CPU_3V0 supply on SOM board                                                                                                                                                                                                                                                                                                                                                                                                               |
| From coin cell battery<br>BAT1 (not populated<br>by default) through<br>jumper J24                                                 | -                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Table 11. MCIMX8ULP-EVK9 power supplies...continued

The following base board supplies are used on the SOM board (passed through board-to-board connectors):

- PSU\_5V0\_4V2 (as SOM\_5V0\_4V2)
- VCC\_FT\_3V3
- LICELL\_3V0

Figure 12 shows the i.MX 8ULP power sequence.



Note:

MCIMX8ULP-EVK9 Board User Manual

- A delay of ~10 ms occurs after VDD\_PTB ramp up.
- VDD\_PTB is driven low (>250 ms) by PMIC during cold reset.

For more details on the i.MX 8ULP power sequence, see the "Power sequencing—system" section in *i.MX* 8ULP Applications Processor—Consumer Products Data Sheet or *i.MX* 8ULP Applications Processor—Industrial Products Data Sheet.

#### 2.2.1 PMIC supplies

MCIMX8ULP-EVK9 has a power management integrated circuit (PMIC) U6 (NXP PCA9460A), which is placed on the MX8ULP-EVK9SOM board. PMIC allows you to configure the power supply rails according to the needs of your application.

Figure 13 shows the PMIC power supplies.

MCIMX8ULP-EVK9 Board User Manual

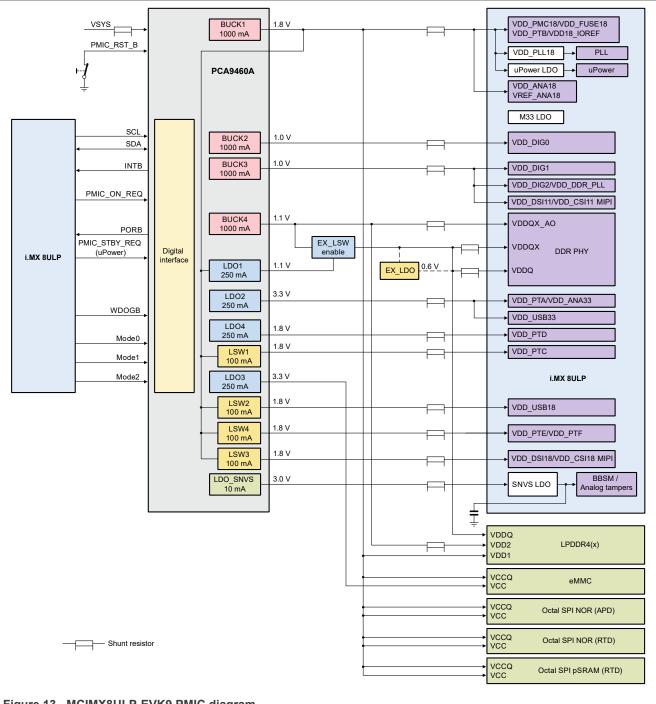



Figure 13. MCIMX8ULP-EVK9 PMIC diagram

PMIC U6 produces most of the power supplies required on the SOM board. Table 12 describes the power supplies that originate from the PMIC.

Note: Unless specified explicitly, the part identifiers mentioned in Table 12 correspond to the MX8ULP-EVK9SOM board.

```
MCIMX8ULP-EVK9-UM
```

### MCIMX8ULP-EVK9 Board User Manual

| Power source | Manufacturer and<br>part number | Power supply                          | Description                                                                                                                                                                                                                                                                                                                                                        |
|--------------|---------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PMIC U6      | NXP PCA9460A                    | LX1: BUCK1_1V8 (1.8 V)                | <ul> <li>Produces the following supplies:</li> <li>BUCK1_DRAM_1V8</li> <li>BUCK1_NOR_pSRAM_1V8</li> <li>BUCK1_LDOBIAS_1V8</li> <li>BUCK1_EMMC_NOR_1V8</li> <li>Provides enable input for producing SRC_5<br/>V0, SYS_5V0_4V2, PER_3V3, PER_1V8, and<br/>ITE_1V2 supplies on the base board</li> <li>Supplies power to load switch U8</li> </ul>                    |
|              |                                 | LX2: BUCK2_1V0 (1 V)                  | Supplies power to load switch U3                                                                                                                                                                                                                                                                                                                                   |
|              |                                 | LX3: BUCK3_1V0 (1 V)                  | Supplies power to load switch U2                                                                                                                                                                                                                                                                                                                                   |
|              |                                 | LX4: BUCK4_1V1 (1.1 V)                | <ul> <li>Produces the following supplies:</li> <li>BUCK4_CPU_1V1</li> <li>BUCK4_DRAM_1V1</li> <li>Supplies power to:</li> <li>Load switch U7</li> <li>Load switch U9 (not populated by default)</li> </ul>                                                                                                                                                         |
|              |                                 | LSW1OUT: BUCK1_LSW1_1<br>V8 (1.8 V)   | Produces BUCK1_LSW1_CPU_1V8 supply                                                                                                                                                                                                                                                                                                                                 |
|              |                                 | LSW2OUT: BUCK1_LSW2_1<br>V8 (1.8 V)   | Produces BUCK1_LSW2_CPU_1V8 supply                                                                                                                                                                                                                                                                                                                                 |
|              |                                 | LSW3OUT: BUCK1_LSW3_1<br>V8 (1.8 V)   | Produces BUCK1_LSW3_CPU_1V8 supply                                                                                                                                                                                                                                                                                                                                 |
|              |                                 | LSW4OUT: BUCK1_LSW4_1<br>V8 (1.8 V)   | Produces BUCK1_LSW4_CPU_1V8 supply                                                                                                                                                                                                                                                                                                                                 |
|              |                                 | LDO1: LDO1_1V1 (1.1 V) <sup>[1]</sup> | <ul> <li>Produces LDO1_CPU_1V1 supply</li> <li>One of the two power source options (default option) for producing LDO1_CPU_1V1_0V6 supply</li> <li>One of the two power source options (default option) for producing LDO1_DRAM_1V1_0V6 supply</li> <li>Supplies power to voltage regulator U10 if resistor R34 is populated (not populated by default)</li> </ul> |
|              |                                 | LDO2: LDO2_3V3 (3.3 V)                | <ul> <li>Produces LDO2_CPU_3V3 supply</li> <li>Supplies power (as VDD_PTA) to the JTAG connector on the base board (through board-to-board connectors)</li> </ul>                                                                                                                                                                                                  |
|              |                                 | LDO3: LDO3_3V3 (3.3 V)                | Produces LDO3_EMMC_3V3 supply                                                                                                                                                                                                                                                                                                                                      |
|              |                                 | LDO4: LDO4_1V8 (1.8 V)                | Produces the following supplies:<br>• LDO4_CPU_1V8<br>• LDO4_EMMC_NOR_1V8                                                                                                                                                                                                                                                                                          |
|              |                                 | LDO_SNVS: LDO5_3V0 (3<br>V)           | One of the two power source options for<br>producing LDO5_CPU_3V0 supply                                                                                                                                                                                                                                                                                           |

#### Table 12. PMIC power supplies

### MCIMX8ULP-EVK9 Board User Manual

| Power source            | Manufacturer and part number            | Power supply                                  | Description                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From BUCK1_1V8 supply   | -                                       | BUCK1_DRAM_1V8 (1.8 V)                        | One of the three power supplies for LPDDR4/<br>LPDDR4x DRAM memory U11                                                                                                                                                                                                                                                                                             |
|                         |                                         | BUCK1_NOR_pSRAM_1V8<br>(1.8 V)                | Supplies power to:<br>• SPI pSRAM memory U13<br>• SPI NOR flash memory U14                                                                                                                                                                                                                                                                                         |
|                         |                                         | BUCK1_LDOBIAS_1V8 (1.8<br>V)                  | Provides BIAS input to voltage regulator U10 if resistor R43 is populated (not populated by default)                                                                                                                                                                                                                                                               |
|                         |                                         | BUCK1_EMMC_NOR_1V8<br>(1.8 V)                 | <ul> <li>Supplies power to SPI NOR flash memory U4</li> <li>One of the two power supplies for eMMC NAND flash memory U5</li> </ul>                                                                                                                                                                                                                                 |
| Load switch U8          | Texas Instruments<br>TPS22921           | BUCK1_CPU_1V8 (1.8 V)                         | Provides the following powers to the i.MX 8ULP<br>processor:<br>• VDD_PTB<br>• VDD18_IOREF<br>• VDD_FUSE18<br>• VDD_PLL18<br>• VDD_PMC18<br>• VDD_ANA18 and VREFH_ANA18 (through<br>BUCK1_CPU_1V8 filtered supply VDD_ANA_1<br>V8)                                                                                                                                 |
| Load switch U3          | Texas Instruments<br>TPS22925<br>BNYPHT | BUCK2_CPU_1V0 (1 V)                           | Provides VDD_DIG0 power to the i.MX 8ULP processor                                                                                                                                                                                                                                                                                                                 |
| Load switch U2          | Texas Instruments<br>TPS22925<br>BNYPHT | BUCK3_CPU_1V0 (1 V / 1.1<br>V) <sup>[2]</sup> | Provides the following powers to the i.MX 8ULP<br>processor:<br>• VDD_DIG1<br>• VDD_DIG2<br>• VDD_DDR_PLL<br>• VDD_DSI11<br>• VDD_CSI11                                                                                                                                                                                                                            |
| Load switch U7          | Texas Instruments<br>TPS22925<br>BNYPHT | LDO1_1V1 (1.1 V) <sup>[3]</sup>               | <ul> <li>Produces LDO1_CPU_1V1 supply</li> <li>One of the two power source options (default option) for producing LDO1_CPU_1V1_0V6 supply</li> <li>One of the two power source options (default option) for producing LDO1_DRAM_1V1_0V6 supply</li> <li>Supplies power to voltage regulator U10 if resistor R34 is populated (not populated by default)</li> </ul> |
| From BUCK4_1V1 supply   | -                                       | BUCK4_CPU_1V1 (1.1 V)                         | Provides VDDQX_AO_DDR power to the i.MX<br>8ULP processor                                                                                                                                                                                                                                                                                                          |
| Load switch U9<br>(DNP) | Texas Instruments<br>TPS22925<br>BNYPHT |                                               |                                                                                                                                                                                                                                                                                                                                                                    |

#### Table 12. PMIC power supplies...continued

#### MCIMX8ULP-EVK9 Board User Manual

| Power source                                                                      | Manufacturer and part number            | Power supply                                         | Description                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From BUCK4_1V1 supply                                                             | -                                       | BUCK4_DRAM_1V1 (1.1 V)                               | Second power supply for LPDDR4/LPDDR4x<br>DRAM memory U11                                                                                                                                                      |
| From BUCK1_<br>LSW1_1V8 supply                                                    | -                                       | BUCK1_LSW1_CPU_1V8<br>(1.8 V)                        | Provides VDD_PTC power to the i.MX 8ULP processor                                                                                                                                                              |
| From BUCK1_<br>LSW2_1V8 supply                                                    | -                                       | BUCK1_LSW2_CPU_1V8<br>(1.8 V)                        | Provides the following powers to the i.MX 8ULP<br>processor:<br>• VDD_USB0_18<br>• VDD_USB1_18                                                                                                                 |
| From BUCK1_<br>LSW3_1V8 supply                                                    | -                                       | BUCK1_LSW3_CPU_1V8<br>(1.8 V)                        | Provides the following powers to the i.MX 8ULP<br>processor:<br>• VDD_DSI18<br>• VDD_CSI18                                                                                                                     |
| From BUCK1_<br>LSW4_1V8 supply                                                    | -                                       | BUCK1_LSW4_CPU_1V8<br>(1.8 V)                        | Provides VDD_PTE and VDD_PTF powers to the i.MX 8ULP processor                                                                                                                                                 |
| Voltage regulator<br>U10                                                          | Texas Instruments<br>TPS7A1106<br>PDRVT | LDO1_0V6 (0.6 V)                                     | <ul> <li>Another option (alternative option) to produce<br/>LDO1_CPU_1V1_0V6 supply</li> <li>Another option (alternative option) to produce<br/>LDO1_DRAM_1V1_0V6 supply</li> </ul>                            |
| From LDO1_1V1 supply                                                              | -                                       | LDO1_CPU_1V1 (1.1 V)                                 | Provides VDDQX_DDR power to the i.MX 8ULP processor                                                                                                                                                            |
| From LDO1_1V1 /<br>LDO1_0V6 supply                                                | -                                       | LDO1_CPU_1V1_0V6 (1.1 V<br>(default value) / 0.6 V)  | Provides VDDQ_DDR power to the i.MX 8ULP processor                                                                                                                                                             |
| From LDO1_1V1 /<br>LDO1_0V6 supply                                                | -                                       | LDO1_DRAM_1V1_0V6 (1.1<br>V (default value) / 0.6 V) | Third power supply for LPDDR4/LPDDR4x DRAM memory U11                                                                                                                                                          |
| From LDO2_3V3<br>supply                                                           | -                                       | LDO2_CPU_3V3 (3.3 V)                                 | <ul> <li>Provides the following powers to the i.MX 8ULP processor:</li> <li>VDD_PTA</li> <li>VDD_ANA33 (through LDO2_CPU_3V3 filtered supply VDD_ANA_3V3)</li> <li>VDD_USB0_33</li> <li>VDD_USB1_33</li> </ul> |
| From LDO3_3V3 supply                                                              | -                                       | LDO3_EMMC_3V3 (3.3 V)                                | Another power supply for eMMC NAND flash memory U5                                                                                                                                                             |
| From LDO4_1V8<br>supply                                                           | -                                       | LDO4_CPU_1V8 (1.8 V)                                 | Provides VDD_PTD power to the i.MX 8ULP processor                                                                                                                                                              |
|                                                                                   |                                         | LDO4_EMMC_NOR_1V8<br>(1.8 V)                         | Supplies power to CMD signal pull-up resistor and CLK signal pull-up resistor (not populated) for the eMMC NAND flash memory U5                                                                                |
| From LDO5_3V0<br>supply on SOM<br>board or LICELL_3<br>V0 supply on base<br>board | -                                       | LDO5_CPU_3V0 (3 V)                                   | Provides VDD_VBAT42 power to the i.MX 8ULP processor                                                                                                                                                           |

#### Table 12. PMIC power supplies...continued

PMIC produces LDO1\_1V1 supply if resistor R26 is populated (not populated by default). By default, load switch U7 produces the LDO1\_1V1 supply. For BUCK3\_CPU\_1V0, the default voltage is 1 V. In U-Boot, the voltage is updated to 1.1 V by the software. As an alternative option, LDO1\_1V1 supply can be produced directly from PMIC by populating resistor R26. [1]

[2] [3]

© 2023 NXP B.V. All rights reserved.

MCIMX8ULP-EVK9 Board User Manual

The processor produces this output voltage: VDD\_VBAT18\_CAP.

PMIC is configured via I2C and external pins, as shown in Table 13.

#### Table 13. PMIC pins

| PMIC pin      | Processor pin |
|---------------|---------------|
| SCL           | PTB11         |
| SDA           | PTB10         |
| MODE0         | PTB9          |
| MODE1         | PTB8          |
| MODE2         | PTB7          |
| PMIC_RST_B    | -             |
| PMIC_ON_REQ   | PMIC_ON_REQ   |
| PMIC_STBY_REQ | STANDBY_REQ   |
| WDOG_B        | PTA14         |
| POR_B         | RESET0_B      |
| IRQ_B         | PTB15         |

The following SOM board supplies are used on the base board (passed through board-to-board connectors):

- LDO2\_3V3 (as VDD\_PTA)
- BUCK1\_1V8 (as VDD\_PTB)
- BUCK1\_LSW1\_1V8 (as VDD\_PTC)
- LDO4 1V8 (as VDD PTD)
- BUCK1\_LSW4\_1V8 (as VDD\_PTF)

#### 2.2.2 Power monitoring

Table 14. Power monitors

MCIMX8ULP-EVK9 includes five quad-channel power monitors for power and energy monitoring. All the power monitors are placed on the MX8ULP-EVK9SOM board.

Table 14 describes the MCIMX8ULP-EVK9 power monitors.

|     | Manufacturer and part number |
|-----|------------------------------|
| U15 | Microchip Technology         |

| Microchip Technology<br>PAC1934T-I/J6CX | 0x10                    | BUCK1_CPU_1V8     BUCK4_CPU_1V1                                                                                |
|-----------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|
| _                                       | a. 1.a                  |                                                                                                                |
|                                         | 0x13                    | <ul> <li>BUCK1_LSW2_CPU_1V8</li> <li>BUCK1_LSW3_CPU_1V8</li> <li>LDO4_CPU_1V8</li> <li>LDO2_CPU_3V3</li> </ul> |
| -                                       | 0x14                    | <ul> <li>VSYS_5V0_4V2</li> <li>LDO1_CPU_1V1_0V6</li> <li>BUCK4_DRAM_1V1</li> </ul>                             |
|                                         | 0x11                    | BUCK2_CPU_1V0     BUCK3_CPU_1V0                                                                                |
| _                                       | 0x12                    | • LDO5_CPU_3V0                                                                                                 |
|                                         | All information provide | 0x11                                                                                                           |

#### MCIMX8ULP-EVK9 Board User Manual

| Part identifier | Manufacturer and part number | 7-bit I2C address <sup>[1]</sup> | Power rails                                                                              |  |  |
|-----------------|------------------------------|----------------------------------|------------------------------------------------------------------------------------------|--|--|
|                 |                              |                                  | <ul> <li>LDO1_CPU_1V1</li> <li>BUCK1_LSW1_CPU_1V8</li> <li>BUCK1_LSW4_CPU_1V8</li> </ul> |  |  |

#### Table 14. Power monitors...continued

[1] A 7-bit address does not include the read/write (R/W) bit.

#### 2.2.2.1 Power rails under measurement

<u>Table 15</u> provides details about MX8ULP-EVK9SOM board power rails tested by NXP. The current and sense resistance values correspond to the values populated on the MX8ULP-EVK9SOM board revision A. See the latest board schematics for further information.

 Table 15. Power rails tested on SOM board

| Sequence | Power rail                   | Typical | Range 1 measurement |                         | Range 2 measurement |                         |
|----------|------------------------------|---------|---------------------|-------------------------|---------------------|-------------------------|
|          | voltage<br>(V)               |         | Current (mA)        | Sense<br>resistance (Ω) | Current (mA)        | Sense<br>resistance (Ω) |
| 1        | VSYS_5V0_4V2 <sup>[1]</sup>  | 5.0     | 2000                | 0.02                    | 10                  | 10                      |
| 2        | LDO5_CPU_3V0                 | 3.0     | _                   | 200.00                  | _                   | _                       |
| 3        | BUCK1_CPU_1V8 <sup>[1]</sup> | 1.8     | 900                 | 0.10                    | 9                   | 10                      |
| 4        | LDO2_CPU_3V3                 | 3.3     | -                   | 1.00                    | -                   | _                       |
|          | BUCK1_LSW4_CPU_1V8           | 1.8     | -                   | 1.00                    | -                   | _                       |
| 5        | BUCK2_CPU_1V0 <sup>[1]</sup> | 1.0     | 500                 | 0.05                    | 5                   | 10                      |
|          | BUCK1_LSW2_CPU_1V8           | 1.8     | _                   | 1.00                    | _                   | _                       |
| 6        | BUCK3_CPU_1V0 <sup>[1]</sup> | 1.0     | 1000                | 0.02                    | 5                   | 10                      |
|          | BUCK4_CPU_1V1                | 1.1     | -                   | 2.00                    | -                   | _                       |
|          | BUCK4_DRAM_1V1               | 1.1     | -                   | 0.05                    | -                   | _                       |
| 7        | LDO4_CPU_1V8                 | 1.8     | -                   | 1.00                    | -                   | _                       |
| 8        | BUCK1_LSW1_CPU_1V8           | 1.8     | _                   | 1.00                    | _                   | _                       |
| 9        | LDO1_CPU_1V1                 | 1.1     | _                   | 0.50                    | _                   | _                       |
|          | LDO1_CPU_1V1_0V6             | 1.1     | _                   | 0.05                    | _                   | _                       |
| 10       | BUCK1_LSW3_CPU_1V8           | 1.8     | -                   | 2.00                    | -                   | -                       |

[1] Supports dual-range measurement

#### 2.2.2.2 Power measurement applications

You can use the following two applications to acquire real-time power data from the board. Both the applications are available for download at GitHub.

• <u>BCU software</u>: It is a command-line tool designed to control boards/platforms that support remote control and power measurement. It provides functions, such as on/off key operation, board reset, setting boot mode, JTAG debug, and power measurement through the USB debug port.

• <u>PMT software</u>: It is a GUI-based tool with features similar to BCU. It provides an additional GUI feature that allows real-time profiling of power rails, such as graphical monitoring of power, voltage, and current.

#### MCIMX8ULP-EVK9 Board User Manual

The sampling rate achieved on BCU is higher than the sampling rate achieved on PMT due to the GUI processing on PMT. Due to the higher sampling rate, BCU is used for power acquisition where fine live monitoring is not the primary purpose. For example, remote acquisition.

Due to its enhanced GUI, PMT is used for live power monitoring activities during system design, debug phases, and also post-processing analysis.

Power acquisitions made using BCU can be imported into PMT for post-processing analysis; therefore, getting the benefits of both the applications:

- Higher sampling resolution of BCU
- Enhanced visibility of power rail activities of PMT

This document only shows the power measurement functions for MCIMX8ULP-EVK9. For more information about BCU and PMT, see *Board Control Utilities Release Notes* in <u>GitHub</u> and *i.MX Power Measurement Tool Application Note* (AN13119).

### 2.3 Clocks

MCIMX8ULP-EVK9 provides all the clocks required for the processor and peripheral interfaces. <u>Table 16</u> provides details about the clocks available on MCIMX8ULP-EVK9.

| Clock generator                  | Clock                                                | Frequency  | Destination                          |  |  |
|----------------------------------|------------------------------------------------------|------------|--------------------------------------|--|--|
| Clocks on MCIMX8ULP-EVK9BB board |                                                      |            |                                      |  |  |
| Quartz crystal X1                | FT_[OSCI, OSCO]                                      | 12 MHz     | FT4232H USB-to-UART/MPSSE bridge U37 |  |  |
| Crystal oscillator Y1            | M2_RTC_CLK                                           | 32.768 kHz | M.2 connector J19                    |  |  |
| Crystal oscillator Y2            | CSI_MCLK                                             | 24 MHz     | Mini-SAS camera connector J4         |  |  |
| Quartz crystal Y3                | uartz crystal Y3 XI, XO 25 MHz RMII Ethernet PHY U50 |            | RMII Ethernet PHY U50                |  |  |
| Clocks on MX8ULP-EVK9SOM board   |                                                      |            |                                      |  |  |
| Quartz crystal Y1                | XTAL0, EXTAL0                                        | 24 MHz     | i.MX 8ULP processor                  |  |  |
| Quartz crystal QZ1               | XTAL32, EXTAL32                                      | 32.768 kHz | i.MX 8ULP processor                  |  |  |
|                                  |                                                      |            |                                      |  |  |

Table 16. MCIMX8ULP-EVK9 clocks

#### 2.4 LPDDR4/LPDDR4x memory

The i.MX 8ULP processor provides one Low-Power Double Data Rate Controller (LPDDR4). On MCIMX8ULP-EVK9, the LPDDR4 controller connects to a 16 Gbit (2 GB) LPDDR4 SDRAM chip (Micron Technology MT53E512M32D1ZW-046 WT:B). The DRAM chip supports 32-bit data bus width and it provides clock frequencies of up to 533 MHz.

The DRAM chip is placed on the MX8ULP-EVK9SOM board and its part identifier is U11. It is placed on the top side of the board. The data traces to the DRAM chip are not necessarily in sequential order. However, the data traces are added as best determined by the layout and other critical traces for the ease of routing.

Each of the processor and the LPDDR4/LPDDR4x chip uses a 240  $\Omega$  1% resistor for ZQ calibration.

By default, the board supports the LPDDR4 DRAM. Hardware rework is required to support the LPDDR4x DRAM.

<u>Table 17</u> provides resistor configuration for LPDDR4 and LPDDR4x modes.

MCIMX8ULP-EVK9 Board User Manual

| Resistor | DDR mode              |                 |
|----------|-----------------------|-----------------|
|          | LPDDR4 (default mode) | LPDDR4x         |
| R20      | Populate              | Do not populate |
| R22      | Populate              | Do not populate |
| R33      | Populate              | Do not populate |
| R37      | Populate              | Do not populate |
| R26      | Do not populate       | Populate        |
| R34      | Do not populate       | Populate        |
| R38      | Do not populate       | Populate        |
| R41      | Do not populate       | Populate        |
| R43      | Do not populate       | Populate        |

Table 17. LPDDR4 and LPDDR4x mode resistor configuration

#### 2.5 eMMC memory

The i.MX 8ULP processor has three Ultra Secured Digital Host Controllers (uSDHCs): uSDHC0, uSDHC1, and uSDHC2.

MCIMX8ULP-EVK9 supports communication with the following uSDHC controllers:

- uSDHC0: Connects to the eMMC memory on the SOM board that is discussed in the current section
- uSDHC2: Connects to the M.2 connector on the base board that is explained in Table 30

Table 18 describes the eMMC memory.

#### Table 18. eMMC memory

| Part identifier   | Manufacturer and part number   | Description                  |
|-------------------|--------------------------------|------------------------------|
| U5 (on SOM board) | Western Digital SDINBDA6-32G-I | 32 GB eMMC NAND flash memory |

The eMMC memory is the default boot device for the i.MX 8ULP processor on MCIMX8ULP-EVK9. For information on boot mode settings, see <u>Table 9</u>.

#### 2.6 FlexSPI interface

The i.MX 8ULP processor has three Flexible Serial Peripheral Interface (FlexSPI) controllers: FlexSPI0, FlexSPI1, and FlexSPI2.

MCIMX8ULP-EVK9 supports SPI communication with all three FlexSPI controllers through three SPI memory devices, one for each controller. The three SPI memory devices are placed on the MX8ULP-EVK9SOM board.

Table 19 describes the SPI memories available on MCIMX8ULP-EVK9.

Table 19. SPI memories

| FlexSPI    | Processor domain                    | SPI memory         |                               |                                                                                                  |
|------------|-------------------------------------|--------------------|-------------------------------|--------------------------------------------------------------------------------------------------|
| controller |                                     | Part<br>identifier | Manufacturer and part number  | Description                                                                                      |
| FlexSPI0   | Real-time processor<br>domain (RTD) | U14                | GigaDevice GD25LX256<br>EBIRY | 256 Mbit (32 MB) octal SPI NOR flash<br>memory, supporting clock frequencies<br>of up to 166 MHz |

#### MCIMX8ULP-EVK9 Board User Manual

| FlexSPI<br>controller | Processor domain                      | SPI memory         |                                |                                                                                                  |  |
|-----------------------|---------------------------------------|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------|--|
|                       |                                       | Part<br>identifier | Manufacturer and part number   | Description                                                                                      |  |
| FlexSPI1              |                                       | U13                | AP Memory APS6408L-<br>OBM-BA  | 64 Mbit (8 MB) octal SPI pSRAM<br>memory, supporting clock frequencies<br>of up to 133 MHz       |  |
| FlexSPI2              | Application processor<br>domain (APD) | U4                 | Macronix MX25UW51345<br>GXDI00 | 512 Mbit (64 MB) octal SPI NOR flash<br>memory, supporting clock frequencies<br>of up to 166 MHz |  |

Table 19. SPI memories...continued

### 2.7 Ethernet interface

The i.MX 8ULP processor has an Ethernet controller (ENET) with a 10/100 Mbit/s Ethernet MAC.

MCIMX8ULP-EVK9 communicates with the Ethernet controller through to a 10BASE-T / 100BASE-TX reduced media-independent interface (RMII) Ethernet PHY U50 (Microchip Technology KSZ8081RNB).

The RMII PHY is connected to an RJ45 Ethernet jack J2 (Hanrun HR911105A), which has integrated magnetics.

### 2.8 USB interface

The i.MX 8ULP processor has two independent USB 2.0 On-The-Go (OTG) controllers: USB0 and USB1. Both the controllers provide host and device functionality with support for OTG.

On MCIMX8ULP-EVK9, each USB OTG controller connects to a USB Type-C connector, as explained in <u>Table 20</u>.

| USB OTG    | USB connector   |                              |                                                             |  |  |
|------------|-----------------|------------------------------|-------------------------------------------------------------|--|--|
| controller | Part identifier | Manufacturer and part number | Description                                                 |  |  |
| USB0       | J15             | ANYTRONIC 23                 | Two USB 3.1 Type-C connectors. Each connector               |  |  |
| USB1       | J16             | K20101#LCP-582RF             | allows an external USB connection using a USB Type-C cable. |  |  |

Table 20. USB connectors

As an alternative option, the USB1 controller can be connected to the M.2 connector J19. For more information, see Table 30.

For controlling USB host power, each USB OTG port (USB0/USB1) connects to a USB host power control switch U39/U43 (NXP NX5P3090UK). Each USB power switch gets powered by a 5 V power supply and it:

- Enables 5 V VBUS power from the associated USB port when the port operates in Host mode
- Produces 5 V VBUS power to be used by the associated USB port when the port operates in Device mode

Each USB power switch sends a power fault indication (through PTE18\_USB0\_OC/PTE20\_USB1\_OC signal) to the processor if current consumption for the connected USB device exceeds the maximum allowed limit of 3.3 A.

For controlling USB mode of operation, each USB OTG port (USB0/USB1) connects to a configuration channel (CC) logic chip U41/U40 (NXP PTN5150A). A CC logic chip is used for USB configuration in USB Type-C applications that include CC control logic detection and indication functions.

The following three pins of U41/U40 are used for USB configuration:

#### MCIMX8ULP-EVK9 Board User Manual

- EXT\_SEL: Selects configuration channel (CC1/CC2) for communication with USB Type-C connector
- PORT: Sets one of the following modes as USB mode:
  - Upstream-Facing Port (UFP) mode (Device mode)
  - Downstream-Facing Port (DFP) mode (Host mode)
  - Dual-Role Power (DRP) mode (Host or Device mode)
- ADD/CON\_DET: In I2C mode, this pin acts as an input pin (ADD) and sets the I2C address of the CC logic chip. In Non-I2C mode, this pin acts as an output pin (CON\_DET) and notifies the processor if a USB device is detected in the USB connector.

Table 21 describes the settings of EXT\_SEL, PORT, and ADD/CON\_DET pins of CC logic chips U41 and U40.

| Pin         | Value/setting                                                   | Description                                                                                                                              |
|-------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| EXT_SEL     | 0                                                               | Configuration channel 2 (CC2) is selected.                                                                                               |
|             | 1 (default value for both U41 and U40)                          | Configuration channel 1 (CC1) is selected.                                                                                               |
| PORT        | 0                                                               | USB port is set to UFP mode.                                                                                                             |
|             | 1                                                               | USB port is set to DFP mode.                                                                                                             |
|             | Not connected / floating (default setting for both U41 and U40) | USB port is set to DRP mode.                                                                                                             |
| ADD/CON_DET | 0 (default value for U41)                                       | CC logic chip is placed at I2C address 0x3A (7-bit I2C address 0x1D).                                                                    |
|             | 1 (default value for U40)                                       | CC logic chip is placed at I2C address 0x7A (7-bit I2C address 0x3D).                                                                    |
|             | Not connected / floating                                        | <ul><li> If no USB connection is detected, the pin has value 0.</li><li> If a USB connection is detected, the pin has value 1.</li></ul> |

 Table 21. CC logic chip configuration pin settings

**Note:** For more details on the PTN5150A pin assignments, see <u>PTN5150A Product Data Sheet</u> at NXP website.

#### 2.9 CAN interface

The i.MX 8ULP processor has a Flexible Controller Area Network (FlexCAN) controller, which supports CAN with flexible data-rate (FD).

MCIMX8ULP-EVK9 supports communication with the FlexCAN controller through a high-speed (HS) CAN transceiver U24 (NXP TJA1057GT/3), which provides differential transmit and receive capabilities to the FlexCAN controller.

Note: For more details about TJA1057GT/3, see TJA1057 Data Sheet.

The CAN transceiver drives CAN signals between the FlexCAN controller and a physical two-wire CAN bus:

- It receives analog data from CAN bus lines, converts it into digital data, and sends it to the processor
- It receives digital data from the processor, converts it into analog data, and sends it to the CAN bus lines

The CAN bus terminates at a 3-pin header J8 (not populated by default). Table 22 explains J8 header pinout.

| Table 22. | CAN | header | pinout |
|-----------|-----|--------|--------|
|           |     |        |        |

| Pin number | Signal name | Description                 |
|------------|-------------|-----------------------------|
| 1          | CAN0_H      | CAN transceiver high signal |
| 2          | CAN0_L      | CAN transceiver low signal  |

MCIMX8ULP-EVK9-UM

© 2023 NXP B.V. All rights reserved.

MCIMX8ULP-EVK9 Board User Manual

| Table 22. CAN hea | der pinoutcontinued |
|-------------------|---------------------|
|-------------------|---------------------|

| Pin number | Signal name | Description |
|------------|-------------|-------------|
| 3          | GND         | Ground      |

### 2.10 Display interface

The i.MX 8ULP processor has a MIPI display serial interface (MIPI-DSI) host controller, which operates on the transmit side of a DSI link. The data transmitted by the MIPI-DSI controller can be displayed in one of the following two ways on MCIMX8ULP-EVK9:

• As HDMI output (default option): The i.MX 8ULP processor does not support HDMI output. However, MCIMX8ULP-EVK9 has a MIPI-to-HDMI transmitter U10 (ITE IT6161) that supports an HDMI 1.4b display, with SPDIF audio input.

The data is transmitted to the MIPI-to-HDMI transmitter, which converts MIPI-DSI signals to HDMI signals and transmits them to an HDMI Type-A connector J1. An HDMI cable can be connected from the HDMI connector for displaying the data on a display device.

• Through a MIPI display: The data is transmitted to a MIPI-DSI + touch connector J18. For displaying data using this option, a touch screen display can be attached to the J18 connector. The connector supports an LCD panel from Rocktech Displays (RK055HDMIPI4MA0). The LCD panel is a 5.5-inch, 720 x 1280 pixel TFT panel with LED back light and full viewing angle. For more details on the RK055HDMIPI4MA0 LCD panel, see <u>nxp.com</u>.

The selection of one of these options can be made using a set of three multiplexers described in <u>Section 2.18.1</u>.

### 2.11 Camera interface

The i.MX 8ULP processor has a Mobile Industry Processor Interface (MIPI) camera serial interface - 2 (MIPI-CSI-2) host controller, which handles image sensor data from camera modules.

On MCIMX8ULP-EVK9, the MIPI-CSI-2 controller is connected to a mini-SAS camera connector J4. The connector supports a MIPI-CSI camera module from NXP (MINISASTOCSI). The camera module is based on a 5-megapixel image sensor from OmniVision (OV5640). For more details on the MINISASTOCSI module, see nxp.com.

#### 2.12 I2C interface

The Inter-Integrated Circuit (I2C) protocol is a serial bus protocol that allows multiple peripheral devices to communicate to one or more master devices with a pair of control and data signals.

In MCIMX8ULP-EVK9, the I2C interface is implemented through I2C buses from two I2C masters, described in <u>Table 23</u>. MCIMX8ULP-EVK9 also provides a 2x4-position I2C connector for remote I2C access.

| I2C bus | Processor domain                      | I2C master                                  | Description                                                                                                                   |
|---------|---------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| LPI2C0  | Real-time processor<br>domain (RTD)   | NXP MIMX8UD7DVK10SA i<br>(U12 on SOM board) | i.MX 8ULP processor                                                                                                           |
| LPI2C1  |                                       |                                             |                                                                                                                               |
| LPI2C7  | Application processor<br>domain (APD) |                                             |                                                                                                                               |
| PMIC0   | -                                     |                                             |                                                                                                                               |
| FTB     | -                                     | USB debug host                              | Host computer connected to MCIMX8ULP-<br>EVK9 through USB micro-B connector J17.<br>The I2C bus is supported through the FTDI |

 Table 23.
 I2C buses and masters

#### MCIMX8ULP-EVK9 Board User Manual

# Table 23. I2C buses and masters...continued I2C bus Processor domain I2C master Description I2C bus FT4232H USB-to-UART/MPSSE bridge (U37).

Table 24 shows the MCIMX8ULP-EVK9 I2C bus device map.

*Note:* Unless specified explicitly, the part identifiers mentioned in <u>Table 24</u> correspond to the MCIMX8ULP-EVK9BB board.

Table 24. I2C bus device map

| I2C bus                 | 7-bit I2C<br>address <sup>[1]</sup> | Device                                             | Description                                                                                                                                                                                                             |  |  |
|-------------------------|-------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                         | I2C master: i.MX 8ULP processor     |                                                    |                                                                                                                                                                                                                         |  |  |
| LPI2C0 (domain:<br>RTD) | 0x18                                | NXP FXLS8974CFR3<br>(U29)                          | Accelerometer                                                                                                                                                                                                           |  |  |
|                         | 0x1A                                | Cirrus Logic WM8960<br>(U48)                       | Onboard audio codec                                                                                                                                                                                                     |  |  |
|                         | 0x20                                | NXP PCA6416AHF,128<br>(U27)                        | I/O expander                                                                                                                                                                                                            |  |  |
|                         | 0x4C                                | ITE IT6161 (U10)                                   | MIPI-to-HDMI transmitter                                                                                                                                                                                                |  |  |
|                         | 0x60                                | NXP MPL3115A2 (U34)                                | I2C precision pressure sensor                                                                                                                                                                                           |  |  |
|                         | 0x6A                                | STMicroelectronics<br>LSM6DSO (U11) <sup>[2]</sup> | G-sensor + gyroscope                                                                                                                                                                                                    |  |  |
|                         | [3]                                 | MIPI-CSI camera module                             | Camera module attached to the mini-SAS camera connector J4                                                                                                                                                              |  |  |
|                         | [4]                                 | Arduino board <sup>[5]</sup>                       | Board/module attached to the Arduino socket<br>(J20, J21, J22, and J23 connectors). The Arduino<br>connectors are not populated by default. I2C signals<br>are connected through pins 9 and 10 of the J20<br>connector. |  |  |
| LPI2C1 (domain:<br>RTD) | [4]                                 | LCD panel                                          | Module attached to the MIPI-DSI + touch connector J18                                                                                                                                                                   |  |  |
| LPI2C7 (domain:         | 0x1D                                | NXP PTN5150A (U41)                                 | USB0 CC logic chip                                                                                                                                                                                                      |  |  |
| APD)                    | 0x21                                | NXP PCAL6408AHK (U8)                               | I/O expander                                                                                                                                                                                                            |  |  |
|                         | 0x3D                                | NXP PTN5150A (U40)                                 | USB1 CC logic chip                                                                                                                                                                                                      |  |  |
|                         | [4]                                 | External I2C device                                | Module attached to the I2C connector J6                                                                                                                                                                                 |  |  |
|                         | [4]                                 | M.2 card                                           | Module attached to the M.2 connector J19                                                                                                                                                                                |  |  |
|                         | [4]                                 | Arduino board <sup>[5]</sup>                       | Board/module attached to the Arduino socket<br>(J20, J21, J22, and J23 connectors). The Arduino<br>connectors are not populated by default. I2C signals<br>are connected through pins 9 and 10 of the J20<br>connector. |  |  |
| PMIC0                   | -                                   | NXP PCA9460A (U6 on SOM board)                     | PMIC                                                                                                                                                                                                                    |  |  |
|                         | I2C master: Host computer           |                                                    |                                                                                                                                                                                                                         |  |  |

#### MCIMX8ULP-EVK9 Board User Manual

| I2C bus | 7-bit I2C<br>address <sup>[1]</sup>                                                | Device                                                        | Description                                 |
|---------|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|
| FTB     | 0x10                                                                               | Microchip Technology<br>PAC1934T-I/J6CX (U15<br>on SOM board) | Power monitors                              |
|         | 0x11                                                                               | Microchip Technology<br>PAC1934T-I/J6CX (U18<br>on SOM board) |                                             |
|         | 0x12                                                                               | Microchip Technology<br>PAC1934T-I/J6CX (U19<br>on SOM board) |                                             |
|         | 0x13                                                                               | Microchip Technology<br>PAC1934T-I/J6CX (U16<br>on SOM board) |                                             |
|         | 0x14                                                                               | Microchip Technology<br>PAC1934T-I/J6CX (U17<br>on SOM board) |                                             |
|         | 0x20                                                                               | NXP PCA6416AHF,128<br>(U28)                                   | I/O expanders                               |
|         | 0x21                                                                               | NXP PCA6416AHF,128<br>(U13)                                   |                                             |
|         | 0x48                                                                               | NXP PCT2075 (XU28 on SOM board)                               | Temperature sensor                          |
|         | 0x53 (when<br>resistor R6 is<br>populated and<br>resistor R4 is not<br>populated.) | Microchip Technology<br>AT24C02C-XHM-B (U1)                   | System ID EEPROM (not populated by default) |
|         | 0x57 (when<br>resistor R4 is<br>populated and<br>resistor R6 is not<br>populated.) |                                                               |                                             |

Table 24. I2C bus device map...continued

[1] A 7-bit address does not include the read/write (R/W) bit.

[2] By default, U11 is placed on the LPI2C0 bus. Alternatively, U11 can be placed on the I3C2 bus, which is in the APD domain.

[3] I2C address depends on the plugged-in camera module. For the OV5640 camera module, the I2C address is 0x78.

[4] I2C address depends on the plugged-in board/module.

[5] By default, LPI2C0 provides I2C bus to the Arduino board. Alternatively, LPI2C7 can provide I2C bus to the Arduino board.

Table 25 explains the I2C connector J6 (Samtec SSM-104-L-DV) pinout.

#### Table 25. I2C connector pinout

| Pin numbers | Signal name          | Description  |
|-------------|----------------------|--------------|
| 3, 4        | PTE12_LPI2C7_SCL_3V3 | I2C clock    |
| 5, 6        | PTE13_LPI2C7_SDA_3V3 | I2C data     |
| 1, 2        | PER_3V3              | Power supply |
| 7, 8        | GND                  | Ground       |

MCIMX8ULP-EVK9 Board User Manual

### 2.13 Audio codec

The i.MX 8ULP processor has the following eight Synchronous Audio Interface (SAI) controllers:

- SAI0 and SAI1 for Cortex-M33 domain
- SAI2 and SAI3 for DSP Fusion domain
- SAI4 and SAI5 for Cortex-A35 domain
- SAI6 and SAI7 for LPAV domain

MCIMX8ULP-EVK9 supports communication with the following SAI controllers:

- SAI0: Connects to an onboard/external audio codec. This connection is discussed in the current section.
- SAI6: Connects to the M.2 connector J19. For more information, see <u>Table 30</u>.

For communication with the SAI0 controller, MCIMX8ULP-EVK9 provides the following two options:

• Onboard audio codec option: MCIMX8ULP-EVK9 has an audio codec U48 (Cirrus Logic WM8960), which encodes analog audio into digital audio and decodes digital audio into analog audio. The audio codec supports 24-bit I2S data and 48 kHz sampling rate.

The onboard audio codec is connected to a 3.5 mm audio stereo headphone jack J14 (Fodot Electronics KJ366EYS) for audio input/output.

• External audio codec option: MCIMX8ULP-EVK9 has a 2x5-pin header J12 for connecting an external codec.

Communication between the onboard/external audio codec and the processor is enabled using I2C bus (for control signals) and I2S bus (for data signals). <u>Table 26</u> shows control and data signal mapping between the audio codec and the processor.

| I2C/I2S signal    | Description      | Processor pin |
|-------------------|------------------|---------------|
| PTA8_LPI2C0_SCL   | I2C clock        | PTA8          |
| PTA9_LPI2C0_SDA   | I2C data         | PTA9          |
| PTA7_I2S0_TXD0    | I2S transmit     | PTA7          |
| PTA2_I2S0_RXD0    | I2S receive      | PTA2          |
| PTA4_I2S0_MCLK    | I2S master clock | PTA4          |
| PTA0_I2S0_RX_BCLK | I2S bit clock    | PTAO          |
| PTA1_I2S0_RX_FS   | I2S frame sync   | PTA1          |

#### Table 26. Audio codec control and data signals

The audio jack J14 accepts a CTIA standard, 4-pole, 3.5 mm audio plug having pinout as shown in Table 27.

#### Table 27. Audio plug pinout

| Audio plug diagram | Pin number | Description             |
|--------------------|------------|-------------------------|
| 1432               | 1          | Microphone              |
|                    | 2          | Left-side earpiece      |
|                    | 3          | Right-side earpiece     |
| 14 mm              | 4          | Connects to the ground. |

#### 2.14 Sensors

MCIMX8ULP-EVK9 has three sensors supported through the LPI2C0 controller of the i.MX 8ULP processor. <u>Table 28</u> describes the MCIMX8ULP-EVK9 sensors.

### MCIMX8ULP-EVK9 Board User Manual

| Part identifier | Manufacturer and part number  | Description                                                                                                                                                                                                                                                                                                | 7-bit I2C address |
|-----------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| U29             | NXP FXLS8974CFR3              | CFR3 12-bit, 3-axis, compact digital accelerometer,<br>supporting ±2/4/8/16 g acceleration. It is designed<br>for use in a wide range of industrial and medical IoT<br>applications that require ultra-low-power wake-up on<br>motion. It operates at 3.3 V.<br>For more information, see <u>nxp.com</u> . |                   |
| U11             | STMicroelectronics<br>LSM6DSO | 3-axis digital accelerometer (G-sensor) + 3-axis digital gyroscope, supporting an acceleration range of $\pm 2/4/8/16$ g and an angular rate range of $\pm 125/250/500/1000/2000$ dps. It operates at 1.8 V.                                                                                               | 0x6A              |
| U34             | NXP MPL3115A2                 | <ul> <li>I2C precision pressure sensor with altimetry, supporting a wide operating range of 20 kPa to 110 kPa. It operates at 3.3 V. Its current consumption is as follows:</li> <li>Active mode: 2 mA</li> <li>Standby mode: 2μA</li> <li>For more information, see <u>nxp.com</u>.</li> </ul>            | 0x60              |

#### Table 28. MCIMX8ULP-EVK9 sensors

#### 2.14.1 Temperature sensor

MCIMX8ULP-EVK9 has a digital temperature sensor (NXP PCT2075), which is placed on the MX8ULP-EVK9SOM board (part identifier: XU28). By default, the interrupt signal of the temperature sensor is open drain.

The temperature sensor is controlled through the I2C bus (FTB) of the USB-to-UART/MPSSE bridge (U37 on the base board) and its 7-bit I2C address is 0x48.

### 2.15 ADC/DAC

The i.MX 8ULP processor has two Analog-to-Digital Converter (ADC) controllers: ADC0 and ADC1. Each ADC controller supports 22 input channels:

- 11 channels (0A 10A) with plus (+) polarity
- 11 channels (0B 10B) with minus (-) polarity

The i.MX 8ULP processor has two Digital-to-Analog Converter (DAC) controllers: DAC0 and DAC1.

MCIMX8ULP-EVK9 provides a 10-pin header J11 for connecting an external 12-bit ADC/DAC.

Table 29 explains the ADC/DAC connector pinout.

| Pin number | Signal name | Description                                                      |  |
|------------|-------------|------------------------------------------------------------------|--|
| 1          | PTA16_PTA16 | Connects to i.MX 8ULP ADC1 channel 4A (disconnected by default). |  |
| 3          | PTA15_PTA15 | Connects to i.MX 8ULP ADC1 channel 3B.                           |  |
| 7          | PTA18_PTA18 | Connects to i.MX 8ULP ADC1 channel 5A.                           |  |
| 9          | PTA24_PTA24 | Connects to i.MX 8ULP ADC1 channel 5B.                           |  |
| 8          | DAC0_OUT    | Connects to i.MX 8ULP DAC0 output.                               |  |
| 2, 4       | -           | Connects to the ADC_VDD supply (3.3 V by default).               |  |
| 5, 6       | -           | Connects to the ground.                                          |  |

Table 29. ADC/DAC connector pinout

© 2023 NXP B.V. All rights reserved.

MCIMX8ULP-EVK9 Board User Manual

| Table 29. ADC/DAC connector pinoutcontinued |             |               |  |
|---------------------------------------------|-------------|---------------|--|
| Pin number                                  | Signal name | Description   |  |
| 10                                          | -           | Not connected |  |

### 2.16 M.2 connector and Wi-Fi/Bluetooth module

MCIMX8ULP-EVK9 has a 75-pin, M.2 Key-E mini card connector J19 for plugging a Wi-Fi/Bluetooth card. The M.2 mini card connector supports communication with the LPUART6, LPI2C7, uSDHC2, SAI6, and USB1 controller of the i.MX 8ULP processor.

<u>Table 30</u> explains the M.2 connector pinout.

| Pin numbers | Signal name          | Connection details                                                                                                           |  |
|-------------|----------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| 6           | M2_LED1_B            | Connects to the M.2 card WLAN status LED (D9).                                                                               |  |
| 16          | M2_LED2_B            | Connects to the M.2 card Bluetooth status LED (D10).                                                                         |  |
| 20          | M2_BT_WAKE           | Connects to the PTF24 pin of the i.MX 8ULP processor via a 30 V Schottky barrier diode, which is pulled up by the software.  |  |
| 50          | M2_RTC_CLK           | 32.768 kHz RTC clock from base board crystal oscillator Y1                                                                   |  |
| 23          | PTG0_WLAN_RESET      | Connects to the P0 port of I/O expander U8.                                                                                  |  |
| 54          | PTG1_BT_RESET_3V3    | Connects to the P1 port of I/O expander U8 through voltage translator U7.                                                    |  |
| 56          | PTG2_WAKEUP_WLAN_3V3 | Connects to the P2 port of I/O expander U8 through voltage translator U7.                                                    |  |
| 8           | PTE10_I2S6_TX_BCLK   | Connects to the SAI6 controller of the i.MX 8ULP processor.                                                                  |  |
| 10          | PTE11_I2S6_TX_FS     |                                                                                                                              |  |
| 12          | PTE6_I2S6_RXD0       | _                                                                                                                            |  |
| 14          | PTE14_I2S6_TXD2      | 1                                                                                                                            |  |
| 9           | PTE2_SDHC2_CLK       | Connects to the uSDHC2 controller of the i.MX 8ULP                                                                           |  |
| 11          | PTE3_SDHC2_CMD       | processor.                                                                                                                   |  |
| 13          | PTE1_SDHC2_D0        |                                                                                                                              |  |
| 15          | PTE0_SDHC2_D1        |                                                                                                                              |  |
| 17          | PTE5_SDHC2_D2        |                                                                                                                              |  |
| 19          | PTE4_SDHC2_D3        |                                                                                                                              |  |
| 22          | PTF19_LPUART6_RX     | Connects to the LPUART6 controller of the i.MX 8ULP                                                                          |  |
| 32          | PTF18_LPUART6_TX     | processor.                                                                                                                   |  |
| 34          | PTF16_LPUART6_CTS_b  | -                                                                                                                            |  |
| 36          | PTF17_LPUART6_RTS_b  | _                                                                                                                            |  |
| 58          | PTE13_LPI2C7_SDA     | Connects to the LPI2C7 controller of the i.MX 8ULP                                                                           |  |
| 60          | PTE12_LPI2C7_SCL     | processor.                                                                                                                   |  |
| 3           | USB1_DP              | Connects to the USB1 controller of the i.MX 8ULP processor                                                                   |  |
| 5           | USB1_DM              | <ul> <li>(disconnected by default). By default, USB Type-C<br/>connector J16 is connected to the USB1 controller.</li> </ul> |  |

Table 30. M.2 connector pinout

#### MCIMX8ULP-EVK9 Board User Manual

| Pin numbers                                                                                                                                | Signal name | Connection details                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------|--|
| 21                                                                                                                                         | PTE7_PTE7   | Connects to the PTE7 pin of the i.MX 8ULP processor.      |  |
| 2, 4, 72, 74                                                                                                                               |             | Connects to the M2_3V3 supply.                            |  |
| 38, 40                                                                                                                                     |             | Connects to the PER_1V8 supply (disconnected by default). |  |
| 1, 7, 18, 33, 39, 45, 51,<br>57, 63, 69, 75                                                                                                |             | Connects to the ground.                                   |  |
| 24, 25, 26, 27, 28, 29, 30,<br>31, 35, 37, 41, 42, 43, 44,<br>46, 47, 48, 49, 52, 53, 55,<br>59, 61, 62, 64, 65, 66, 67,<br>68, 70, 71, 73 |             | Unused                                                    |  |

 Table 30. M.2 connector pinout...continued

Note: For more details about i.MX 8ULP interfaces, see i.MX 8ULP Processor Reference Manual.

The MCIMX8ULP-EVK9 kit comes with a Wi-Fi + Bluetooth card to be used on the M.2 connector. <u>Table 31</u> describes the Wi-Fi + Bluetooth card.

Table 31. Wi-Fi + Bluetooth card

| Feature             | Description                           |  |  |
|---------------------|---------------------------------------|--|--|
| Manufacturer        | Embedded Artists AB                   |  |  |
| Part number         | EAR00385                              |  |  |
| Module              | Murata LBEE5CJ1XK (also known as 1XK) |  |  |
| Chipset             | NXP IW416                             |  |  |
| WLAN standards      | Wi-Fi 4, 802.11 a/b/g/n               |  |  |
| Bluetooth standards | 5.2 BR/EDR/LE                         |  |  |

**Note:** For more information on the 1XK M.2 card, see <u>https://www.embeddedartists.com/products/1xk-m-2-module/</u>.

### 2.17 Arduino connectors

MCIMX8ULP-EVK9 has an Arduino socket with the following four connectors:

- J20: 1x10-position receptacle
- J21: 1x8-position receptacle
- J22: 1x8-position receptacle
- J23: 1x6-position receptacle

The two 1x8-position receptacles are placed diagonally opposite to each other. The Arduino socket is pincompatible with an Arduino Uno revision 3 (R3) board. The Arduino connectors are not populated by default.

<u>Table 32, Table 33, Table 34, and Table 35</u> show the pinouts of the Arduino connectors.

| Table 32 | . J20 | pinout |
|----------|-------|--------|
|----------|-------|--------|

| Pin number | Function                                                         | Processor pin | Processor domain |
|------------|------------------------------------------------------------------|---------------|------------------|
|            | LPSPI4_PCS3 / LPUART6_TX / I3C2_SCL/ TPM4_<br>CH2 / I2S6_TX_BCLK | PTE10         | A35              |
| 2          | SPDIF_OUT2 / I3C2_SDA / TPM4_CH3 / I2S6_TX_<br>FS                | PTE11         |                  |

MCIMX8ULP-EVK9-UM

© 2023 NXP B.V. All rights reserved.

### MCIMX8ULP-EVK9 Board User Manual

| Pin number | Function                                                          | Processor pin | Processor domain |
|------------|-------------------------------------------------------------------|---------------|------------------|
| 3          | LPSPI5_PCS0 / LPUART6_RX/TPM5_CH0 / I2S5_<br>RX_BCLK              | PTF19         |                  |
| 4          | LPSPI5_SOUT / LPUART6_RTS_b/ I2C6_SDA /<br>TPM4_CH5 / I2S4_TXD0   | PTF17         |                  |
| 5          | LPSPI5_SIN / LPUART6_CTS_b/ LPI2C6_SCL /<br>TPM4_CH4 / I2S4_TX_FS | PTF16         |                  |
| 6          | LPSPI5_SCK / LPUART6_TX/TPM5_CLKIN / I2S4_<br>TXD1                | PTF18         |                  |
| 7          | GND                                                               | -             | -                |
| 8          | PER_3V3 supply                                                    | -             | -                |
| 9          | LPI2C0_SDA (default function)                                     | PTA9          | M33              |
|            | LPI2C7_SDA (alternative function)                                 | PTE13         | A35              |
| 10         | LPI2C0_SCL (default function)                                     | PTA8          | M33              |
|            | LPI2C7_SCL (alternative function)                                 | PTE12         | A35              |

#### Table 32. J20 pinout...continued

#### Table 33. J21 pinout

| Pin number | Function                                 | Processor pin | Processor domain |
|------------|------------------------------------------|---------------|------------------|
| 1          | LPUART2_RX / MICFIL0_DATA1 / WUU0_P20    | PTB3          | M33              |
| 2          | LPUART2_TX / MICFIL0_CLK / WUU0_P19      | PTB2          |                  |
| 3          | LPUART2_RTS_b / MICFIL0_DATA0 / WUU0_P18 | PTB1          |                  |
| 4          | LPUART2_CTS_b / MICFIL0_CLK / WUU0_P17   | PTB0          |                  |
| 5          | LPSPI0_PCS0 / I3C_SDA / MQS0_RIGHT       | PTA23         |                  |
| 6          | LPSPI0_SCK / I3C_SCL / MQS0_LEFT         | PTA22         |                  |
| 7          | LPSPI0_SOUT / TPM1_CH1 / MQS0_RIGHT      | PTA21         |                  |
| 8          | LPSPI0_SIN / TPM1_CH0                    | PTA20         |                  |

#### Table 34. J22 pinout

| Pin numbers | Function                            | Description                      |
|-------------|-------------------------------------|----------------------------------|
| 1           | Unused                              | Supports power/reset connections |
| 2, 4        | PER_3V3 supply                      |                                  |
| 3           | RESET0_B                            |                                  |
| 5, 8        | SYS_5V0_4V2 supply (5 V by default) |                                  |
| 6, 7        | GND                                 |                                  |

### MCIMX8ULP-EVK9 Board User Manual

| Fable 35. J23 pinout |                                                                                     |                                                             |                  |  |
|----------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|--|
| Pin number           | Function                                                                            | Processor pin                                               | Processor domain |  |
| 1                    | ADC1_CH3B / LPSPI1_PCS0 / LPUART0_RX / I3<br>C0_SDA / TPM0_CH0 / SEC0_RX / WUU0_P12 | PTA15                                                       | M33              |  |
| 2                    | ADC1_CH4A / LPSPI1_SIN / LPUART0_CTS_b /<br>TPM0_CH1 / CAN0_TX / WUU0_P13           | PTA16                                                       |                  |  |
| 3                    | ADC1_CH4B / LPSPI1_SOUT / LPUART0_RTS_b /<br>TPM0_CH2 / CAN0_RX / WUU0_P14          | PTA17                                                       | -                |  |
| 4                    | ADC1_CH5A / LPSPI1_SCK / LPUART0_TX /<br>TPM0_CH3 / WUU0_P15                        | PTA18                                                       | -                |  |
| 5                    | ADC1_CH5B / I3C0_PUR / WUU0_P16                                                     | PTA24                                                       |                  |  |
| 6                    | CMP0_IN4 / I3C0_SCL / TPM0_CH5 / SEC0_TX /<br>RTC_CLKOUT                            | PTA6<br><b>Note:</b> PTA6 does not<br>support ADC function. |                  |  |

### 2.18 I/O multiplexers

MCIMX8ULP-EVK9 I/O multiplexers can be categorized into the following categories:

- Multiplexers for DSI and SPDIF signal muxing (see <u>Section 2.18.1</u>)
- Multiplexers for LPUART and I2S signal muxing (see Section 2.18.2)
- Multiplexer for JTAG signal muxing (Section 2.18.3)

#### 2.18.1 DSI/SPDIF signal muxing

MCIMX8ULP-EVK9 provides a set of three multiplexers for muxing processor DSI and SPDIF signals between MIPI-to-HDMI transmitter U10 and MIPI-DSI + touch connector J18.

Table 36 describes the DSI and SPDIF signal multiplexers.

| Part identifier | Manufacturer and part number   | Description                                                |
|-----------------|--------------------------------|------------------------------------------------------------|
| U55             | NXP CBTU02043                  | 2-differential-channel, 1:2 multiplexers, used for         |
| U56             |                                | muxing DSI signals.                                        |
| U62             | Texas Instruments TMUX1574RSVR | 4-channel, 1:2 multiplexer, used for muxing SPDIF signals. |

Table 36. DSI/SPDIF signal multiplexers

At each multiplexer, the routing of DSI/SPDIF signals to/from the processor is decided based on the value of the PTH9\_MIPI\_SWITCH signal from I/O expander U27, as follows:

- 0 (default value): DSI/SPDIF signals are routed to the MIPI-to-HDMI transmitter U10.
- 1: DSI/SPDIF signals are routed to the MIPI-DSI + touch connector J18.

#### 2.18.2 LPUART/I2S signal muxing

MCIMX8ULP-EVK9 provides a pair of multiplexers for muxing processor LPUART and I2S signals between M.2 connector J19 (and/or HiFi4 UART debug connector J3, not populated by default) and Arduino connector J20.

Table 37 describes the LPUART and I2S signal multiplexers.

### MCIMX8ULP-EVK9 Board User Manual

| Part identifier | Manufacturer and part number | Description                                                |  |
|-----------------|------------------------------|------------------------------------------------------------|--|
| U59             |                              | 4-channel, 1:2 multiplexers. U59 is used for muxing        |  |
| U60             |                              | LPUART signals whereas U60 is used for muxing I2S signals. |  |

#### Table 37. LPUART/I2S signal multiplexers

At each multiplexer, the routing of LPUART/I2S signals to/from the processor is decided based on the value of the PTH10\_ARDUINO\_SWITCH signal from I/O expander U27, as follows:

- 0 (default value): LPUART/I2S signals are routed to the M.2 connector J19 (and/or HiFi4 UART debug connector J3).
- 1: LPUART/I2S signals are routed to the Arduino connector J20.

#### 2.18.3 JTAG signal muxing

MCIMX8ULP-EVK9 provides the following two remote JTAG debugging options for the i.MX 8ULP processor:

- Using a JTAG debugger connected through JTAG header J13
- Using USB debug host through channel A of USB-to-UART/MPSSE bridge U37

The selection of one of the above options is made at a 4-channel 1:2 multiplexer U42 (Texas Instruments TMUX1574RSVR), based on the value of the FT\_REMOTE\_EN signal from I/O expander U28, as follows:

- 0 (default value): JTAG signals from the JTAG connector are routed to the i.MX 8ULP processor.
- 1: JTAG signals from the USB-to-UART/MPSSE bridge channel A are routed to the i.MX 8ULP processor.

#### 2.19 I/O expanders

MCIMX8ULP-EVK9 has four general-purpose input/output (GPIO) expanders that provide remote I/O expansion via the I2C bus interface.

Table 38 describes the MCIMX8ULP-EVK9 I/O expanders.

| Part identifier | Manufacturer and part number | Description                                                                                                            |
|-----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|
| U27             | NXP PCA6416AHF,128           | 8-bit GPIO expander, which provides remote I/O expansion for the LPI2C0 bus of the i.MX 8ULP processor.                |
| U8              | NXP PCAL6408AHK              | 16-bit GPIO expander, which provides remote I/O expansion for the LPI2C7 bus of the i.MX 8ULP processor.               |
| U28             | NXP PCA6416AHF,128           | Two 16-bit GPIO expanders, which are controlled by a USB debug host over I2C bus (FTB) of the USB-to-UART/MPSSE bridge |
| U13             |                              | (U37).                                                                                                                 |

Table 38. I/O expanders

#### 2.20 Board control and debug interface

MCIMX8ULP-EVK9 uses a USB-to-UART/multiprotocol synchronous serial engine (MPSSE) device U37 (FTDI FT4232H) for board control and debug.

The USB-to-UART/MPSSE device acts as a bridge to enable communication between the host computer and the i.MX 8ULP processor. The USB-to-UART/MPSSE bridge is connected to a USB micro-B connector J17 on the base board that serves as the USB debug connector on the board. A USB cable can be used to connect the board to the host computer.

| MCIMX8 | ULP-EVK9-UM |
|--------|-------------|
| User   | manual      |

#### MCIMX8ULP-EVK9 Board User Manual

The USB-to-UART/MPSSE bridge has four UART channels (A, B, C, and D), which allow USB-to-UART connections or USB-to-MPSSE connections (through protocols, such as JTAG, I2C, or SPI). One or both of channels A and B can be configured as MPSSE ports.

Table 39 describes the supported connections for each USB-to-UART/MPSSE bridge channel.

| Channel | Description                                                                                                                                                                                                                                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A       | Provides a remote JTAG debugging option for the i.MX 8ULP processor system. Another remote JTAG debugging option for the i.MX 8ULP processor system is provided by the JTAG header J13. For more details, see <u>Section 2.20.4</u> .                                                                             |
|         | The selection between the two remote JTAG debugging options is made at multiplexer U42. For more details, see <u>Section 2.18.3</u> .                                                                                                                                                                             |
| В       | Provides I2C control to base board peripheral devices (I/O expanders U13 and U28 and system ID memory U1, not populated) and SOM board peripherals (power monitors and temperature sensor). This port also provides reset input to I/O expanders U13 and U28, and accepts interrupt output from I/O expander U28. |
| С       | Can be used as a UART debug port for debugging the Arm Cortex-A35 core of the i.MX 8ULP processor.                                                                                                                                                                                                                |
| D       | Can be used as a UART debug port for debugging the Arm Cortex-M33F core or the Arm Cortex-A35 core of the i.MX 8DXL processor. The selection between the two cores is made based on the settings of the jumpers J25 and J26. For more details, see <u>Table 7</u> .                                               |

Table 39. USB-to-UART/MPSSE bridge channel connections

The Board Control Utilities (BCU) software supports board control features, debugging via open-OCD, and also power monitoring. For more details, see <a href="https://github.com/NXPmicro/bcu">https://github.com/NXPmicro/bcu</a>.

The Power Measurement Tool (PMT) also provides board control features and power monitoring with a graphical interface. For more details, see <u>AN13119</u>, i.<u>MX Power Measurement Tool</u>.

#### 2.20.1 System ID EEPROM

MCIMX8ULP-EVK9 provides a memory placeholder U1 for adding a 2 kbit system ID EEPROM (Microchip Technology AT24C02C-XHM-B). U1 is controlled through the I2C bus of channel B of USB-to-UART/MPSSE bridge U37.

This EEPROM can be used to store the following board information:

- Board ID and revision
- SoC ID and revision
- PMIC ID and revision
- Number of measurable power rails on the board
- Board serial number (user-defined)

PMT and BCU Section 2.2.2.2 can detect the type of board connected by reading the EEPROM.

If the connected board is used for the first time, ensure that the EEPROM is programmed correctly. EEPROMs are programmed initially during the board-manufacturing process. However, they can be reconfigured later, if required.

#### 2.20.1.1 EEPROM configuration

<u>Table 40</u> describes the board-related configuration settings stored in the EEPROM. The "Data" column indicates the configuration values set at the time of board manufacturing. Some of the configuration settings, such as BOARD ID and BOARD REV can be modified later using the BCU or PMT tool.

### MCIMX8ULP-EVK9 Board User Manual

| Setting   | Data                       | Description                                                                                                |  |
|-----------|----------------------------|------------------------------------------------------------------------------------------------------------|--|
| BOARD_ID  | NXP i.MX8ULP EVK9<br>Board | Ensure that BOARD_ID and BOARD_REV are set properly in the PMT yaml configuration file.                    |  |
| BOARD_REV | A0                         | In BCU, provide the correct [-brev=] value in the command if you are not using the default revision value. |  |
|           |                            | <b>Note:</b> <i>BOARD_REV</i> value depends on the current revision of the board.                          |  |
| SOC_ID    | i.MX8ULP                   | This setting is related to the [-board=] option and cannot be changed manually in BCU.                     |  |
| SOC_REV   | A0                         | In BCU, provide the correct [-srev=] value in the command if you are not using the default revision value. |  |
|           |                            | <b>Note:</b> <i>SOC_REV</i> value depends on the revision of the SoC used on the board.                    |  |
| PMIC_ID   | PCA9460AUK                 | These settings are related to the [-board=] option and cannot be changed                                   |  |
| PMIC_REV  | N/A                        | manually in BCU.                                                                                           |  |
| NBR_PWR_  | 15                         |                                                                                                            |  |
| RAILS     |                            |                                                                                                            |  |
| BOARD_SN  | 24 (example)               | Board-specific serial number, user-defined (range: 1–65535).                                               |  |

#### Table 40. Board configuration settings

For details on how to configure EEPROM, see *Board Control Utilities Release Notes* in <u>GitHub</u> and *i.MX Power Measurement Tool Application Note* (<u>AN13119</u>).

#### 2.20.2 Boot configuration

The i.MX 8ULP processor supports separate boot ROMs for application (A35) and real-time (M33) domains. With separate boot ROMs, the processor supports three boot types, as described in <u>Table 41</u>.

| Boot type                       | Boot ROM            |
|---------------------------------|---------------------|
| Single boot (default boot type) | A35 ROM             |
| Dual boot                       | A35 ROM and M33 ROM |
| Low-power boot                  | M33 ROM             |

The processor supports several boot configurations based on the above boot types. The BT0\_CFGn and BT1 CFGn pins are used to select different boot configurations.

**Note:** For details about *i*.MX 8ULP boot modes and boot configurations, see the "System Boot Flow" chapter in *i*.MX 8ULP Processor Reference Manual.

On MCIMX8ULP-EVK9, the boot configurations can be selected using DIP switch SW5 available on the base board or from the boot configuration stored on the internal fuse of the processor. In addition, the i.MX 8ULP processor can download a program image from a USB connection when configured in the serial download configuration.

<u>Table 9</u> describes how to select the boot configuration using SW5.

**Note:** For information on how to set up and boot MCIMX8ULP-EVK9, see i.MX 8ULP Evaluation Kit 9 Quick Start Guide provided with the MCIMX8ULP-EVK9 hardware kit.

MCIMX8ULP-EVK9 Board User Manual

#### 2.20.3 USB debug connector

MCIMX8ULP-EVK9 has a USB 2.0 micro-B connector that allows to connect the i.MX 8ULP processor to the host computer for debugging purposes. <u>Table 42</u> describes the USB debug connector.

#### Table 42. USB debug connector

| Part identifier | Description                                                                                                                                                                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J17             | Allows you to create a high-speed USB connection between the i.MX 8ULP processor and the host computer. It also supplies 5 V power (VBUS_USB_DBG) to the board.<br>The USB debug connector is connected to the USBDP and USBDM pins of the USB-to-UART/<br>MPSSE bridge U37 (FTDI FT4232H). |

#### 2.20.4 JTAG header

MCIMX8ULP-EVK9 provides a 2x5-pin header J13 that allows JTAG debugging of the i.MX 8ULP processor using a remote debugger. <u>Table 43</u> shows the JTAG header pinout.

#### Table 43. JTAG header pinout

| Pin number | JTAG signal      | Description                                           |
|------------|------------------|-------------------------------------------------------|
| 2          | CON_JTAG_TMS     | TAP machine state                                     |
| 4          | CON_JTAG_TCK     | TAP clock                                             |
| 6          | CON_JTAG_TDO     | TAP data out                                          |
| 8          | CON_JTAG_TDI     | TAP data in                                           |
| 10         | SYS_Global_RST_b | Cold reset, available by default                      |
|            | RESET0_B         | Warm reset (processor only), not available by default |
| 1          | VDD_PTA          | Power supply                                          |
| 3, 5, 7, 9 | GND              | Ground                                                |

### 2.21 PCB information

MCIMX8ULP-EVK9 consists of two boards:

- MX8ULP-EVK9SOM: It is made from FR4 substrate material with standard 6-layer PCB technology
- MCIMX8ULP-EVK9BB: It is made from FR4 substrate material with standard 8-layer PCB technology

Figure 14 shows the MX8ULP-EVK9SOM PCB stack-up information.

MCIMX8ULP-EVK9 Board User Manual

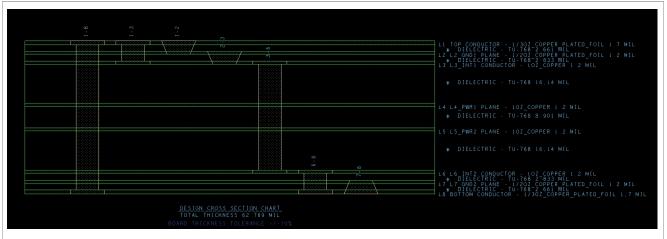
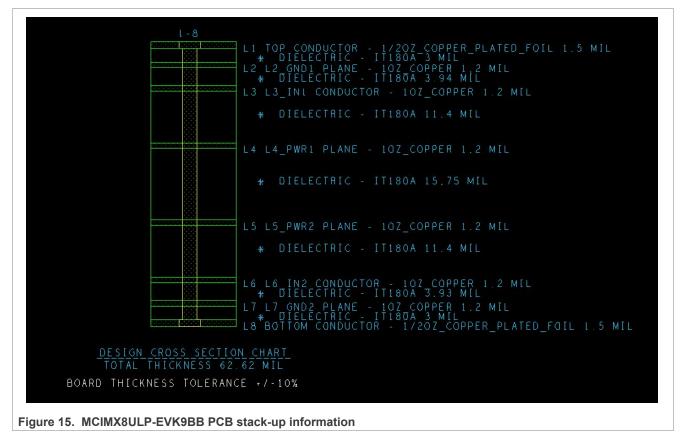




Figure 14. MX8ULP-EVK9SOM PCB stack-up information

Figure 15 shows the MCIMX8ULP-EVK9BB PCB stack-up information.



#### 2.22 Board errata

None

MCIMX8ULP-EVK9 Board User Manual

## 3 Revision history

Table 44 summarizes the revisions to this document.

 Table 44.
 Revision history

| Revision number | Release date | Description            |
|-----------------|--------------|------------------------|
| 1               | 25 August    | Initial public release |

#### MCIMX8ULP-EVK9 Board User Manual

## Legal information

### 4.1 Definitions

Draft - A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

### 4.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products - Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security - Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute or sell products.

## 4.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

MCIMX8ULP-EVK9-UM **User manual** 

MCIMX8ULP-EVK9 Board User Manual

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

### MCIMX8ULP-EVK9 Board User Manual

## Contents

| 1        | Overview                                 |    |
|----------|------------------------------------------|----|
| 1.1      | Acronyms                                 | 2  |
| 1.2      | Related documentation                    | 3  |
| 1.3      | Kit contents                             | 4  |
| 1.4      | Block diagram                            |    |
| 1.5      | Board pictures                           |    |
| 1.6      | Board features                           |    |
| 1.7      | Connectors                               |    |
| 1.8      | Jumpers                                  |    |
| 1.9      | Push and slide buttons                   |    |
| 1.10     | DIP switch                               |    |
| 1.10     | LEDs                                     |    |
| 2        | Functional description                   |    |
| 2.1      | Processor                                |    |
| 2.2      | Board power supply                       |    |
| 2.2.1    | PMIC supplies                            |    |
| 2.2.1    | Power monitoring                         |    |
| 2.2.2    | Power rails under measurement            |    |
|          |                                          |    |
| 2.2.2.2  | Power measurement applications           |    |
| 2.3      | Clocks                                   |    |
| 2.4      | LPDDR4/LPDDR4x memory                    |    |
| 2.5      | eMMC memory                              |    |
| 2.6      | FlexSPI interface                        |    |
| 2.7      | Ethernet interface                       |    |
| 2.8      | USB interface                            |    |
| 2.9      | CAN interface                            |    |
| 2.10     | Display interface                        |    |
| 2.11     | Camera interface                         |    |
| 2.12     | I2C interface                            |    |
| 2.13     | Audio codec                              |    |
| 2.14     | Sensors                                  |    |
| 2.14.1   | Temperature sensor                       |    |
| 2.15     | ADC/DAC                                  |    |
| 2.16     | M.2 connector and Wi-Fi/Bluetooth module |    |
| 2.17     | Arduino connectors                       | 39 |
| 2.18     | I/O multiplexers                         | 41 |
| 2.18.1   | DSI/SPDIF signal muxing                  | 41 |
| 2.18.2   | LPUART/I2S signal muxing                 | 41 |
| 2.18.3   | JTAG signal muxing                       | 42 |
| 2.19     | I/O expanders                            | 42 |
| 2.20     | Board control and debug interface        | 42 |
| 2.20.1   | System ID EEPROM                         | 43 |
| 2.20.1.1 |                                          |    |
| 2.20.2   | Boot configuration                       |    |
| 2.20.3   | USB debug connector                      |    |
| 2.20.4   | JTAG header                              |    |
| 2.21     | PCB information                          |    |
| 2.22     | Board errata                             |    |
| 3        | Revision history                         |    |
| 4        | Legal information                        |    |
|          | • • • • • • • • • • • • • • • • • • •    |    |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

All rights reserved.

For more information, please visit: http://www.nxp.com