
PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC
motors
Rev. 1 — 24 February 2023 User guide

1 Introduction

This user's guide describes the implementation of the sensor and sensorless motor-control software for a 3-
phase Permanent Magnet Synchronous Motor (PMSM). The software is intended for PMSM with sinusoidal
Back Electromotive Force (back-EMF) but is also very well usable for brushless motors (BLDC) with trapezoidal
back-EMF.

The software also includes the motor parameters identification algorithm, on NXP 32-bit LPC series MCUs.
The sensorless control software itself and the PMSM control theory, in general, are described in DRM148:
Sensorless PMSM Field-Oriented Control.

The Freedom power stage (FRDM-MC-LVPMSM) is used as hardware platform for the PMSM control reference
solution.

The hardware-dependent part of the sensorless control software, including peripheral setup and the Motor
Control (MC) peripheral drivers, is described as well.

The last part of the document introduces and explains the user interface represented by the Motor Control
Application Tuning (MCAT) page based on the FreeMASTER run-time debugging tool. These tools present a
simple and user-friendly way for motor parameter identification, algorithm tuning, software control, debugging,
and diagnostics.

Possible control methods in SDK example

Example Supported motor Scalar &
Voltage

Current FOC
(Torque)

Sensorless
Speed FOC

Sensored
Speed FOC

Sensored
Position FOC

pmsm_snsless Linix 45ZWN24-
40 (default motor) ✓ ✓ ✓ N/A N/A

Table 1. Available examples and control methods

Note: The latest documentation for the motor control SDK is available on http://www.nxp.com/sdkmotorcontrol.

https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/DRM148
https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL
http://www.nxp.com/sdkmotorcontrol

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

2 Hardware setup

The PMSM Field-Oriented Control (FOC) application runs on the FRDM-MC-LVPMSM development platform
with the LPCXpresso860-MAX development tool, in combination with the Linix 45ZWN24-40 permanent magnet
synchronous motors.

2.1 Linix 45ZWN24-40 motor
The Linix 45ZWN24-40 motor is a low-voltage 3-phase permanent-magnet motor with hall sensor used in
PMSM applications. The motor parameters are listed in Table 2.

Characteristic Symbol Value Units

Rated voltage Vt 24 V

Rated speed - 4000 RPM

Rated torque T 0.0924 Nm

Rated power P 40 W

Continuous current Ics 2.34 A

Number of pole-pairs pp 2 -

Table 2. Linix 45ZWN24-40 motor parameters

Figure 1. Linix 45ZWN24-40 permanent magnet synchronous motor

The motor has two types of connectors (cables). The first cable has three wires and is designated to power the
motor. The second cable has five wires and is designated for the hall sensors’ signal sensing. For the PMSM
sensorless application, only the power input wires are needed.

2.2 LPCXpresso860-MAX
The LPCXpresso860-MAX board is a powerful and flexible, evaluation and development platform for NXP
LPC865 microcontroller (MCU). It belongs to the LPCXpresso family of boards — boards for NXP LPC MCUs
based on Arm Cortex-M cores.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
2 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

The board is compatible with the Arduino UNO R3 and Pmod compatible boards. It can be used with a wide
range of development tools, including NXP MCUXpresso IDE, Keil µVision, and IAR Embedded Workbench.
The board is lead-free and RoHS-compliant.

The LPCXpresso860-MAX board uses an onboard debug probe, for debugging the LPC865 MCU.

To begin, configure the jumpers on the LPCXpresso860-MAX properly. Table 4 lists the specific jumpers and
their settings for the LPCXpresso860-MAX.

Jumper Setting

P4 2-3

Table 3. LPCXpresso860-MAX jumper settings

Figure 2. LPCXpresso860-MAX board

2.3 LPC board assembling
1. Connect the FRDM-MC-LVPMSM shield on top of the LPCXpresso860-MAX board (there is only one

possible option).
2. Connect the Linix motor 3-phase wires to the screw terminals on the FRDM-MC-LVPMSM board.
3. Plug the USB cable from the USB host to the micro USB connector J4.
4. Plug the 24-V DC power supply to the DC power connector on the FRDM-MC-LVPMSM board.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
3 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 3. Assembled system

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
4 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

3 LPC800 series features and peripheral settings

The LPC800 series based on Arm Cortex-M0+ offers a range of low-power, space efficient, low-pin-count
options for basic microcontroller applications. The LPC800 series MCUs, part of the EdgeVerse™ edge
computing platform, include differentiated product features, such as an NFC communication interface, mutual
capacitive touch, switch matrix for flexible configuration of each I/O pin function and SCTimer/PWM, giving
embedded developers unprecedented design-flexibility.

3.1 LPC86X
The LPC86x is an Arm Cortex-M0+ based, low-cost 32-bit MCU family operating at CPU frequencies of up to 48
MHz. The LPC86x supports up to 64 KB of flash memory and 8 KB of SRAM.

The peripheral complement of the LPC86x includes a CRC engine, one I3C -bus interface, one I2C-bus
interface, up to three USARTs, up to two SPI interfaces, one multi-rate timer, self-wake-up timer, two
FlexTimers, one general purpose 32-bit counter/timer, a DMA, one 12-bit ADC, one analog comparator,
function-configurable I/O ports through a switch matrix, an input pattern match engine, and up to 54 general-
purpose I/O pins.

3.1.1 LPCXpresso860MAX - Hardware timing and synchronization

Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated
peripherals take care of the timing and synchronization on the hardware layer. In addition, it is possible to
set the PWM frequency as a multiple of the ADC interrupt (ADC ISR) frequency where the FOC algorithm is
calculated. In this case, the PWM frequency is equal to the FOC frequency. The timing diagram is shown in
Figure 4.

Figure 4. Hardware timing and synchronization on LPCXpresso860-MAX

• The top signal (FTM counter) shows the FTM counter reloads. At the PWM top and PWM bottom signals, the
dead time is emphasized. The FTM_TRIG is generated on the PWM reload, which triggers ADC conversion.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
5 / 42

https://www.nxp.com/applications/enabling-technologies/edge-computing:EDGE-COMPUTING
https://www.nxp.com/applications/enabling-technologies/edge-computing:EDGE-COMPUTING

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• When the ADC conversion is completed, the ADC ISR (ADC interrupt) is entered. The FOC calculation is
done in this interrupt.

3.2 CPU load and memory usage
The following information apply to the application built using one of the following IDE: MCUXpresso IDE, IAR or
Keil MDK. The memory usage is calculated from the .map linker file, including the 4-KB FreeMASTER recorder
buffer allocated in RAM. In the MCUXpresso IDE, the memory usage can be also seen after project build in
the Console window. Table 4 shows the CPU load. The CPU load is measured using the SysTick timer. The
CPU load is dependent on the fast-loop (FOC calculation) and slow-loop (speed loop) frequencies. In this case,
it applies to the fast-loop frequency of 10 KHz and the slow-loop frequency of 1 KHz. The total CPU load is
calculated using these equations:

Where:

CPUfast - the CPU load taken by the fast loop.

cyclesfast - the number of cycles consumed by the fast loop.

ffast - the frequency of the fast-loop calculation (10 KHz).

fCPU - CPU frequency.

CPUslow - the CPU load taken by the slow loop.

cyclesslow - the number of cycles consumed by the slow loop.

fslow - the frequency of the slow-loop calculation (1 KHz).

CPUtotal - the total CPU load consumed by the motor control.

debug configuration
Device Example

Speed Control Position Control

LPC860 pmsm_snsless 79% N/A

Table 4. Maximum CPU load (fast loop)

Measured CPU load apply to the application built using IAR IDE.

Note: Memory usage and maximum CPU load can differ depending on the used IDEs and settings.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
6 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

4 Project file and IDE workspace structure

All the necessary files are included in one package, which simplifies the distribution and decreases the size
of the final package. The directory structure of this package is simple, easy to use, and organized in a logical
manner. The folder structure used in the IDE is different from the structure of the PMSM package installation,
but it uses the same files. The different organization is chosen due to a better manipulation with folders and files
in workplaces and due to the possibility to add or remove files and directories. The “pack_motor_board“ project
includes all the available functions and routines, MID functions, scalar and vector control of the motor, FOC
control, and FreeMASTER MCAT project. This project serves for development and testing purposes.

4.1 PMSM project structure
The directory tree of the PMSM project is shown in Figure 5.

Figure 5. Directory tree

The main project folder pack_motor_lpcxx\boards\lpcxpressoxx\demo_apps\mc_pmsm\pmsm_snsless contains
the following folders and files:

• iar—for the IAR Embedded Workbench IDE.
• armgcc—for the GNU Arm IDE.
• mdk—for the uVision Keil IDE.
• m1_pmsm_appconfig.h—contains the definitions of constants for the application control processes,

parameters of the motor and regulators, and the constants for other vector control-related algorithms. When

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
7 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

you tailor the application for a different motor using the Motor Control Application Tuning (MCAT) tool, the tool
generates this file at the end of the tuning process.

• main.c—contains the basic application initialization (enabling interrupts), subroutines for accessing the MCU
peripherals, and interrupt service routines. The FreeMASTER communication is performed in the background
infinite loop.

• board.c—contains the functions for the UART, GPIO, and SysTick initialization.
• board.h—contains the definitions of the board LEDs, buttons, UART instance used for FreeMASTER, and so

on.
• clock_config.c and .h—contains the CPU clock setup functions. These files are going to be generated by the

clock tool in the future.
• mc_periph_init.c—contains the motor-control driver peripherals initialization functions that are specific for the

board and MCU used.
• mc_periph_init.h—header file for mc_periph_init.c. This file contains the macros for changing the PWM period

and the ADC channels assigned to the phase currents and board voltage.
• freemaster_cfg.h—the FreeMASTER configuration file containing the FreeMASTER communication and

features setup.
• pin_mux.c and .h—port configuration files. It is recommended to generate these files in the pin tool.
• peripherals.c and .h—MCUXpresso Config Tool configuration files.

The main motor-control folder pack_motor_lpcxx\middleware\motor_control\ contains these subfolders:

• pmsm—contains main pmsm motor-control functions
• freemaster—contains the FreeMASTER project file pmsm_float.pmp. Open this file in the FreeMASTER tool

and use it to control the application. The folder also contains the auxiliary files for the MCAT tool.

The pack_motor_lpcxx\middleware\motor_control\pmsm\pmsm_frac folder contains the following subfolders
common to the other motor-control projects:

• mc_algorithms—contains the main control algorithms used to control the FOC and speed control loop.
• mc_cfg_template—contains templates for MCUXpresso Config Tool components.
• mc_drivers—contains the source and header files used to initialize and run motor-control applications.
• mc_identification—contains the source code for the automated parameter-identification routines of the motor.
• mc_state_machine—contains the software routines that are executed when the application is in a particular

state or state transition.
• state_machine—contains the state machine functions for the FAULT, INITIALIZATION, STOP, and RUN

states.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
8 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

5 Tools

Install the FreeMASTER Run-Time Debugging Tool 3.1.4 and one of the following IDEs on your PC to run and
control the PMSM application properly:

• IAR Embedded Workbench IDE v9.32.1 or higher
• MCUXpresso v11.7.0
• ARM-MDK - Keil μVision version 5.37

For pin_mux.c, clock_config.c or peripherals.c modifications is recommended use MCUXpresso Configuration
Tool v13 or higher.

Note: For information on how to build and run the application in your IDE, see the Getting Started
with MCUXpresso SDK document located in the pack_motor_<booard>/docs folder or find the related
documentation at MCUXpresso SDK builder.

5.1 Compiler warnings
Warnings are diagnostic messages that report constructions that are not inherently erroneous and warn
about potential runtime, logic, and performance errors. In some cases, warnings can be suspended and
these warnings do not show during the compiling process. One of such special cases is the “unused function”
warning, where the function is implemented in the source code with its body, but this function is not used. This
case occurs when you implement the function as a supporting function for better usability, but you do not use
the function for any special purposes for a while.

The IAR Embedded Workbench IDE suppresses these warnings:

• Pa082 - undefined behavior; the order of volatile accesses is not defined in this statement.
• Pa050 - non-native end of line sequence detected.

The Arm-MDK Keil μVision IDE suppresses these warnings:

• 6314 - No section matches pattern xxx.o (yy).

By default, there are no other warnings shown during the compiling process.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
9 / 42

https://www.nxp.com/freemaster
https://www.iar.com/iar-embedded-workbench/
https://www.nxp.com/mcuxpresso
http://www2.keil.com/mdk5/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

6 Motor-control peripheral initialization

The motor-control peripherals are initialized by calling the MCDRV_Init_M1() function during the MCU startup
and before the peripherals are used. All initialization functions are in the mc_periph_init.c source file and the
mc_periph_init.h header file. The definitions specified by the user are also in these files. The features provided
by the functions are the 3-phase PWM generation and 3-phase current measurement, as well as the DC-bus
voltage and auxiliary quantity measurement. The principles of both the 3-phase current measurement and the
PWM generation using the Space Vector Modulation (SVM) technique are described in Sensorless PMSM
Field-Oriented Control (document DRM148).

The mc_periph_init.h header file provides several macros that can be defined by the user:

• M1_MCDRV_ADC_PERIPH_INIT—this macro calls ADC peripheral initialization.
• M1_MCDRV_PWM_PERIPH_INIT—this macro calls PWM peripheral initialization.
• M1_PWM_FREQ—the value of this definition sets the PWM frequency.
• M1_FOC_FREQ_VS_PWM_FREQ—enables you to call the fast loop interrupt at every first, second, third,

or nth PWM reload. This is convenient when the PWM frequency must be higher than the maximal fast-loop
interrupt.

• M1_SPEED_LOOP_FREQ—the value of this definition sets the speed-loop frequency.
• M1_PWM_DEADTIME—the value of the PWM dead time in nanoseconds.
• M1_PWM_PAIR_PH[A..C]—these macros enable a simple assignment of the physical motor phases to the

PWM periphery channels (or submodules). Change the order of the motor phases this way.
• M1_ADC[1,2]_PH_[A..C]—these macros are used to assign the ADC channels for the phase current

measurement. The general rule is that at least one of the phase currents must be measurable on both
ADC converters and the two remaining phase currents must be measurable on different ADC converters.
The reason for this is that the selection of the phase current pair to measure depends on the current SVM
sector. If this rule is broken, a preprocessor error is issued. For more information about the 3-phase current
measurement, see Sensorless PMSM Field-Oriented Control (document DRM148).

• M1_ADC[1,2]_UDCB—this define is used to select the ADC channel for the measurement of the DC-bus
voltage.

In the motor-control software, these API-serving ADC and PWM peripherals are available:

• The available APIs for the ADC are:
– mcdrv_adc_t—MCDRV ADC structure data type.
– void M1_MCDRV_ADC_PERIPH_INIT()—this function is by default called during the ADC peripheral

initialization procedure invoked by the MCDRV_Init_M1() function and should not be called again after the
peripheral initialization is done.

– void M1_MCDRV_CURR_3PH_CHAN_ASSIGN(mcdrv_adc_t*)—calling this function assigns proper ADC
channels for the next 3-phase current measurement based on the SVM sector. The function always returns
true.

– void M1_MCDRV_CURR_3PH_CALIB_INIT(mcdrv_adc_t*)—this function initializes the phase-current
channel-offset measurement. This function always returns true.

– void M1_MCDRV_CURR_3PH_CALIB(mcdrv_adc_t*)—this function reads the current information from the
unpowered phases of a stand-still motor and filters them using moving average filters. The goal is to obtain
the value of the measurement offset. The length of the window for moving the average filters is set to eight
samples by default. This function always returns true.

– void M1_MCDRV_CURR_3PH_CALIB_SET(mcdrv_adc_t*)—this function asserts the phase-current
measurement offset values to the internal registers. Call this function after a sufficient number of
M1_MCDRV_CURR_3PH_CALIB() calls. This function always returns true.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
10 / 42

https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

– void M1_MCDRV_ADC_GET(mcdrv_adc_t*)—this function reads and calculates the actual values of the 3-
phase currents, DC-bus voltage, and auxiliary quantity. This function always returns true.

• The available APIs for the PWM are:
– mcdrv_pwma_pwm3ph_t—MCDRV PWM structure data type.
– void M1_MCDRV_PWM_PERIPH_INIT()—this function is by default called during the PWM periphery

initialization procedure invoked by the MCDRV_Init_M1() function.
– void M1_MCDRV_PWM3PH_SET(mcdrv_pwma_pwm3ph_t*)—this function updates the PWM phase duty

cycles. This function always returns true.
– void M1_MCDRV_PWM3PH_EN(mcdrv_pwma_pwm3ph_t*)—calling this function enables all PWM

channels. This function always returns true.
– void M1_MCDRV_PWM3PH_DIS (mcdrv_pwma_pwm3ph_t*)—calling this function disables all PWM

channels. This function always returns true.
– void M1_MCDRV_PWM3PH_FLT_GET(mcdrv_pwma_pwm3ph_t*)—this function returns the state of the

over-current fault flags and automatically clears the flags (if set). This function returns true when an over-
current event occurs. Otherwise, it returns false.

Note: Not all macros are available on LPCXpresso860-MAX.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
11 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

7 User interface

The application contains the demo mode to demonstrate motor rotation. You can operate it using FreeMASTER.
The FreeMASTER application consists of two parts: the PC application used for variable visualization and
the set of software drivers running in the embedded application. Data is transferred between the PC and the
embedded application via the serial interface. This interface is provided by the debugger included in the boards.

The application can be controlled using these two interfaces:

• The button on the EVK development board (controlling the demo mode):
– LPCXpresso860-MAX - SW2

• Remote control using FreeMASTER (chapter Section 8):
– Using the Motor Control Application Tuning (MCAT) interface.
– Setting a variable in the FreeMASTER Variable Watch.

If you are using your own motor (different from the default motors), make sure to identify all motor parameters.
The automated parameter identification is described in the following sections.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
12 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8 Remote control using FreeMASTER

This section provides information about the tools and recommended procedures to control the sensor/
sensorless PMSM Field-Oriented Control (FOC) application using FreeMASTER. The application contains
the embedded-side driver of the FreeMASTER real-time debug monitor and data visualization tool for
communication with the PC. It supports non-intrusive monitoring, as well as the modification of target variables
in real time, which is very useful for the algorithm tuning. Besides the target-side driver, the FreeMASTER tool
requires the installation of the PC application as well. You can download FreeMASTER 3.x at www.nxp.com/
freemaster. To run the FreeMASTER application including the MCAT tool, double-click the pmsm_frac.pmpx
file located in the middleware\motor_control\freemaster folder. The FreeMASTER application starts and the
environment is created automatically, as defined in the *.pmpx file.

Note: In MCUXpresso can be FreeMASTER application run directly from IDE in motor_control/freemaster
folder

8.1 Establishing FreeMASTER communication
The remote operation is provided by FreeMASTER via the USB interface. Perform the following steps to control
a PMSM motor using FreeMASTER:

1. Download the project from your chosen IDE to the MCU and run it.
2. Open the FreeMASTER file pmsm_x.pmpx. The PMSM project uses the TSA by default, so it is not

necessary to select a symbol file for FreeMASTER.
3. Click the communication button (the green “GO” button in the top left-hand corner) to establish the

communication.

Figure 6.  Green “GO” button placed in top left-hand corner
4. If the communication is established successfully, the FreeMASTER communication status in the

bottom right-hand corner changes from “Not connected” to “RS232 UART Communication; COMxx;
speed=115200”. Otherwise, the FreeMASTER warning popup window appears.

Figure 7. FreeMASTER—communication is established successfully
5. Press F5 to reload the MCAT HTML page and check the App ID.
6. Control the PMSM motor by writing to a control variables in a variable watch.
7. If you rebuild and download the new code to the target, turn the FreeMASTER application off and on.

If the communication is not established successfully, perform the following steps:

1. Go to the “Project -> Options -> Comm” tab and make sure that the correct COM port is selected and the
communication speed is set to 115200 bps.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
13 / 42

http://www.nxp.com/freemaster
http://www.nxp.com/freemaster

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 8. FreeMASTER communication setup window
2. Ensure, that your computer is communicating with the plugged board. Unplug and then plug in the USB

cable and reopen the FreeMASTER project.

8.2 TSA replacement with ELF file
The Freemaster project for motor control example uses Target-Side Addressing (TSA) information about
variable objects and types to be retrieved from the target application by default. With the TSA feature, you
can describe the data types and variables directly in the application source code and make this information
available to the FreeMASTER tool. The tool can then use this information instead of reading symbol data from
the application’s ELF/Dwarf executable file.

FreeMASTER reads the TSA tables and uses the information automatically when an MCU board is connected.
A great benefit of using the TSA are no issues with correct path to ELF/Dwarf file. The variables described
by TSA tables may be read-only, so even if FreeMASTER attempts to write the variable, the value is actively
denied by the target MCU side. The variables not described by any TSA tables may also become invisible and
protected even for read-only access.

The use of TSA means more memory requirements for the target. If you don't want to use the TSA feature, you
need to modify the example code and Freemaster project. Follow these steps:

• Open motor control project and rewrite macro FMSTR_USE_TSA from 1 to 0 in freemaster_cfg.h file.
• Build, download and run motor control project
• Open FreeMASTER project and click to Project → Options (or use shortcut Ctrl+T)
• Click to MAP Files tab and find Default symbol file (ELF/Dwarf executable file) located in IDE Output folder

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
14 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 9. Default symbol file
• Click to OK and restart FreeMASTER communication.

For more information check FreeMASTER User Guide

8.3 MCAT FreeMASTER interface (Motor Control Application Tuning)
The PMSM sensor/sensorless FOC application can be easily controlled and tuned using the Motor Control
Application Tuning (MCAT) plug-in for PMSM. The MCAT for PMSM is a user-friendly page, which runs within
FreeMASTER. The tool consists of the tab menu, and workspace shown in Figure 10. Each tab from the tab
menu represents one sub-module which enables tuning or control different aspects of the application. Besides
the MCAT page for PMSM, several scopes, recorders, and variables in the project tree are predefined in the
FreeMASTER project file to further simplify the motor parameter tuning and debugging.

When the FreeMASTER is not connected to the target, the “Board found” line (2) shows “Board ID not found”.
When the communication with the target MCU is established, the “Board found” line is read from Board ID
variable watch and displayed. If the connection is established and the board ID is not shown, press F5 to reload
the MCAT HTML page.

There are three action buttons in MCAT(3):

• Load data - MCAT input fields (e.g. motor parameters) are loaded from mX_pmsm_appconfig.h file (JSON
formatted comments). Only existing mX_pmsm_appconfig.h files can be selected for loading. Actually loaded
mX_pmsm_appcofig.h file is displayed in grey field (7).

• Save data - MCAT input fields (JSON formatted comments) and output macros are saved to
mX_pmsm_appconfig.h file. Up to 9 files (m1-9_pmsm_appconfig.h) can be selected. A pop up window with
user motor ID and description appears when a different mX_pmsm_appcofig.h file is selected. The motor ID
and description is also saved in mX_pmsm_appcofig.h in form of JSON comment. At single motor control
application the embedded code #includes m1_pmsm_appcofig.h only. Therefore, saving to higher indexed
mX_pmsm_appcofig.h files has no effect at compilation stage.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
15 / 42

https://www.nxp.com/docs/en/user-guide/FMSTERUG.pdf

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• Update target - writes the MCAT calculated tuning parameters to FreeMASTER Variables which effectively
updates the values on target MCU. These tuning parameters are updated in MCU's RAM memory. To write
these tuning parameters to MCU's flash memory, m1_pmsm_appcofig.h must be saved, code re-compiled and
downloaded to MCU.

Note: Path to mX_pmsm_appcofig.h file composes also from Board ID value. Therefore, FreeMASTER must
be connected to target and Board ID value read prior using Save/Load buttons.

Note: Only Update target button updates values on target in real-time. Load/Save buttons operate with
mX_pmsm_appcofig.h file only.

Note: MCAT may require internet connection. If no internet connection is available, CSS and icons may not be
properly loaded.

Figure 10. FreeMASTER + MCAT layout

In the default configuration, the following tabs are available:

• “Application concept”—welcome page with the PMSM sensor/sensorless FOC diagram and a short
description of the application.

• “Parameters”—this page enables you to modify the motor parameters, specification of hardware and
application scales, alignment, and fault limits.

• “Current loop”—current loop PI controller gains and output limits.
• “Speed loop”—this tab contains fields for the specification of the speed controller proportional and integral

gains, as well as the output limits and parameters of the speed ramp. The position proportional controller
constant is also set here.

• “Sensors”—this page contains the encoder parameters and position observer parameters. Not available for all
devices.

• “Sensorless”—this page enables you to tune the parameters of the BEMF observer, tracking observer, and
open-loop startup.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
16 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• “Output file”—this tab shows all the calculated constants that are required by the PMSM sensor/sensorless
FOC application. It is also possible to generate the m1_pmsm_appconfig.h file, which is then used to preset
all application parameters permanently at the project rebuild.

• "Online update" — this tab shows actual values of variables on target and new calculated values, which can
be used for update variables on the target.

The following sections provide simple instructions on how to identify the parameters of a connected PMSM
motor and how to appropriately tune the application.

8.4 Motor Control Modes
In the "Project Tree" you can choose between the scalar control and the FOC control using the appropriate
FreeMASTER tabs. The application can be controlled through the FreeMASTER variables watch which
correspond to the control structure selected in FreeMASTER project tree. This is useful for application tuning
and debugging. Required control structure must be selected in the "M1 MCAT Control" variable. Then use "M1
Application Switch" variable to turn on or off the application. Set/clear "M1 Application Switch" variable also
enables/disables all PWM channels.

8.4.1 Control structure

The scalar control diagram is shown in figure below. It is the simplest type of motor-control techniques. The
ratio between the magnitude of the stator voltage and the frequency must be kept at the nominal value. Hence,
the control method is sometimes called Volt per Hertz (or V/Hz). The position estimation BEMF observer and
tracking observer algorithms (see Sensorless PMSM Field-Oriented Control (document DRM148) for more
information) run in the background, even if the estimated position information is not directly used. This is useful
for the BEMF observer tuning.

Figure 11. Scalar control mode

The block diagram of the voltage FOC is in figure below. Unlike the scalar control, the position feedback is
closed using the BEMF observer and the stator voltage magnitude is not dependent on the motor speed.
Both the d-axis and q-axis stator voltages can be specified in the “M1 MCAT Ud Required” and “M1 MCAT Uq
Required” fields. This control method is useful for the BEMF observer functionality check.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
17 / 42

https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 12. Voltage FOC control mode

The current FOC (or torque) control requires the rotor position feedback and the currents transformed into a d-
q reference frame. There are two reference variables (“M1 MCAT Id Required” and “M1 MCAT Iq Required”)
available for the motor control, as shown in the block diagram in figure below. The d-axis current component
"M1 MCAT Id Required" is responsible for the rotor flux control. The q-axis current component of the current
"M1 MCAT Iq Required" generates torque and, by its application, the motor starts running. By changing the
polarity of the current "M1 MCAT Iq Required", the motor changes the direction of rotation. Supposing that
the BEMF observer is tuned correctly, the current PI controllers can be tuned using the current FOC control
structure.

Figure 13. Current (torque) control mode

The speed PMSM sensor/sensorless FOC (its diagram is shown in figure below) is activated by enabling the
speed FOC control structure. Enter the required speed into the “M1 Speed Required” field. The d-axis current
reference is held at 0 during the entire FOC operation.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
18 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 14. Speed FOC control mode

The position PMSM sensor FOC is shown in figure below (available for sensored/encoder based applications
only). The position control using the P controller can be tuned in the “Speed loop” menu tab. An encoder sensor
is required for the feedback. Without the sensor, the position control does not work. A braking resistor is missing
on the FRDM-MC-LVPMSM board. Therefore, it is needed to set a soft speed ramp (in the “Speed loop” menu
tab) because the voltage on the DC-bus can rise when braking the quickly spinning shaft. It may cause the
overvoltage fault.

Figure 15. Position FOC control mode

8.5 Initial configuration setting and update
1. Open the PMSM control application FreeMASTER project containing the dedicated MCAT plug-in module.
2. Select the “Parameters” tab.
3. Leave the measured motor parameters or specify the parameters manually. The motor parameters can be

obtained from the motor data sheet or using the PMSM parameters measurement procedure described
in PMSM Electrical Parameters Measurement (document AN4680). All parameters provided in Table 5
are accessible. The motor inertia J expresses the overall system inertia and can be obtained using a
mechanical measurement. The J parameter is used to calculate the speed controller constant. However, the
manual controller tuning can also be used to calculate this constant.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
19 / 42

https://www.nxp.com/doc/AN4680

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Parameter Units Description Typical range

pp [-] Motor pole pairs 1-10

Rs [Ω] 1-phase stator resistance 0.3-50

Ld [H] 1-phase direct inductance 0.00001-0.1

Lq [H] 1-phase quadrature
inductance

0.00001-0.1

Ke [V.sec/rad] BEMF constant 0.001-1

J [kg.m2] System inertia 0.00001-0.1

Iph nom [A] Motor nominal phase
current

0.5-8

Uph nom [V] Motor nominal phase
voltage

10-300

N nom [rpm] Motor nominal speed 1000-2000

Table 5. MCAT motor parameters

4. Set the hardware scales—the modification of these two fields is not required when a reference to the
standard power stage board is used. These scales express the maximum measurable current and voltage
analog quantities.

5. Check the fault limits—these fields are calculated using the motor parameters and hardware scales (see
Table 6).

Parameter Units Description Typical range

U DCB trip [V] Voltage value at which the
external braking resistor
switch turns on

U DCB Over ~ U DCB max

U DCB under [V] Trigger value at which
the undervoltage fault is
detected

0 ~ U DCB Over

U DCB over [V] Trigger value at which the
overvoltage fault is detected

U DCB Under ~ U max

N over [rpm] Trigger value at which the
overspeed fault is detected

N nom ~ N max

N min [rpm] Minimal actual speed value
for the sensorless control

(0.05~0.2) *N max

Table 6. Fault limits

6. Check the application scales—these fields are calculated using the motor parameters and hardware scales.

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1 * N nom

E block [V] BEMF scale ke* Nmax

kt [Nm/A] Motor torque constant -

Table 7. Application scales

7. Check the alignment parameters—these fields are calculated using the motor parameters and hardware
scales. The parameters express the required voltage value applied to the motor during the rotor alignment
and its duration.

8. Click the “Store data” button to save the modified parameters into the inner file.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
20 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.6 Switch between Spin and MID
User can switch between two modes of application: Spin and MID (Motor identification). Spin mode is used for
control PMSM (see Section "Motor Control Modes"). MID mode is used for motor parameters identification (see
Section "Identifying parameters of user motor"). Navigate to Motor Identification subblock in the FreeMASTER
project tree. Actual mode of application is shown in APP: State variable. The mode can be changed by APP:
Switch request Spin/MID variable.The transition between Spin and MID can be done only if actual mode is in
a defined stop state (e.g. MID is not in progress or motor is stopped). The result of the change mode request
is shown in APP: Fault variable. Fault MID to Spin occurs when parameters identification still runs or MID state
machine is in the fault state. Fault Spin to MID occurs when M1 Application switch variable watch is ON or M1
Application state variable watch is not STOP.

8.7 Identifying parameters of user motor
Because the model-based control methods of the PMSM drives provide high performance (e.g. dynamic
response, efficiency), obtaining an accurate model of a motor is an important part of the drive design and
control. For the implemented FOC algorithms, it is necessary to know the value of the stator resistance Rs,
direct inductance Ld and quadrature inductance Lq. Unless the default PMSM motor described above is used,
the motor parameter identification is the first step in the application tuning. This section shows how to identify
user motor parameters using MID. MID is written in fixed-point arithmetics. Each available MID algorithm is
described in Section "MID algorithms". MID is controlled via the FreeMASTER "Motor Identification" page shown
in Figure 16.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
21 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 16. MID FreeMASTER control

8.7.1 Motor parameter identification using MID

The whole MID is controlled via the FreeMASTER "Variable Watch". Motor Identification (MID) sub-block shown
in Figure 16. The motor parameter identification workflow is following:

1. Set the MID: On/Off variable to OFF.
2. Select the measurement type you want to perform via the MID: Measurement Type variable:

• PP_ASSIST - Pole-pair identification assistant.
• EL_PARAMS - Electrical parameters measurement.

3. Set the measurement configuration paramers in the MID: Config set of variables.
4. Start the measurement by setting MID: On/Off to ON.
5. Observe the MID: Status variable which indicates whether identification runs or not. Variable MID: State

indicates actual state of the MID state machine. Variable MID: Fault indicates fault captured by estimation
algorithm (e.g. incorrect measurement parameters). Variable is cleared automatically. Variable DIAG: Fault
Captured indicates captured hardware faults (e.g. DC bus undervoltage). Variable is cleared by setting "On"
to DIAG: Fault clear variable.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
22 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

6. If the measurement finishes successfully, the measured motor parameters are shown in the MID: Measured
set of variables and MID: State goes to STOP.

Fault mask Description Troubleshooting

b#0001 Error during initialization electrical
parameters measurement.

Check whether inputs to the MCAA_
EstimRLInit_F16 are valid.

b#0010 Electrical parameters measurement
fault. Some required value cannot
be reached or wrong measurement
configuration.

Check whether measurement
configuration is valid.

Table 8. MID: Fault variable

Fault mask Description

b#0001 Overcurrent fault occurs.

b#0010 Undervoltage fault occurs.

b#0100 Overvoltage fault occurs.

Table 9. DIAG: Fault Captured variable

8.8 MID algorithms
This section describes how each available MID algorithm works.

8.8.1 Stator resistance measurement

The stator resistance Rs is averaged from the DC steps, which are generated by the algorithm. The DC step
levels are automatically derived from the currents inserted by user. For more details, please, refer to the
documentation of AMCLIB_EstimRL_F32 function from AMMCLib.

8.8.2 Stator inductances measurement

Injection of the AC/DC currents is used for the inductances (Ld, Lq) estimation. Injected AC/DC currents are
automatically derived from the currents inserted by user. The default AC current frequency is 500 Hz. For more
detail, please, refer to the documentation of AMCLIB_EstimRL_F32 function from AMMCLib.

8.8.3 Number of pole-pair assistant

The number of pole-pairs cannot be measured without a position sensor. However, there is a simple assistant
to determine the number of pole-pairs (PP_ASSIST). The number of the pp assistant performs one electrical
revolution, stops for a few seconds, and then repeats. Because the pp value is the ratio between the electrical
and mechanical speeds, it can be determined as the number of stops per one mechanical revolution. It is
recommended not to count the stops during the first mechanical revolution because the alignment occurs
during the first revolution and affects the number of stops. During the PP_ASSIST measurement, the current
loop is enabled and the Id current is controlled to MID Pp IdReqOpenLoop. The electrical position is generated
by integrating the open-loop frequency MID Pp SpeedElReq. If the rotor does not move after the start of
PP_ASSIST assistant, stop the assistant, increase MID Pp IdReqOpenLoop, and restart the assistant.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
23 / 42

https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources
https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.9 Electrical parameters measurement control
This section describes how to control electrical parameters measurement, which contains measuring stator
resistance Rs, direct inductance Ld and quadrature inductance Lq. There are available 4 modes of measurement
which can be selected by MID: Config El Mode Estim RL variable.

Function MCAA_EstimRLInit_F16 must be called before the first use of MCAA_EstimRL_F16. Function
MCAA_EstimRL_F16 must be called periodically with sampling period F_SAMPLING, which can be definied
be user. Maximum sampling frequency F_SAMPLING is 10 kHz. In the scopes under "Motor identification"
FreeMASTER sub-block can be observed measured currents, estimated parameters etc.

8.9.1 Mode 0

This mode is automatic, inductances are measured at a single operating point. Rotor is not fixed. User has
to specify nominal current (MID: Config El I DC nominal variable). The AC and DC currents are automatically
derived from the nominal current. Frequency of the AC signal set to default 500 Hz.

The function will output stator resistance Rs, direct inductance Ld and quadrature inductance Lq.

8.9.2 Mode 1

DC stepping is automatic at this mode. Rotor is not fixed. Compared to the Mode 0, there will be performed an
automatic measurement of the inductances for a definied number (NUM_MEAS) of different DC current levels
using positive values of the DC current. The Ldq dependency map can be seen in the "Inductances (Ld, Lq)"
recorder. User has to specify following parameters before parameters estimation:

• MID: Config El I DC (estim Lq) - Current to determine Lq. In most cases nominal current.
• MID: Config El I DC positive max - Maximum positive DC current for the Ldq dependency map measurement.

Injected AC and DC currents are automatically derived from the MID: Config El I DC (estim Lq) and MID: Config
El I DC positive max currents. Frequency of the AC signal set to default 500 Hz.

The function will output stator resistance Rs, direct inductance Ld , quadrature inductance Lq and Ldq
dependency map.

8.9.3 Mode 2

DC stepping is automatic at this mode. Rotor must be mechanically fixed after initial alignment with the first
phase. Compared to the Mode 1, there will be performed an automatic measurement of the inductances for
a definied number (NUM_MEAS) of different DC current levels using both positive and negative values of the
DC current. The estimated inductances can be seen in the "Inductances (Ld, Lq)" recorder. User has to specify
following parameters before parameters estimation:

• MID: Config El I DC (estim Ld) - Current to determine Ld. In most cases 0 A.
• MID: Config El I DC (estim Lq) - Current to determine Lq. In most cases nominal current.
• MID: Config El I DC positive max - Maximum positive DC current for the Ldq dependency map measurement.

In most cases nominal current.
• MID: Config El I DC negative max - Maximum negative DC current for the Ldq dependency map

measurement.

Injected AC and DC currents are automatically derived from the MID: Config El I DC (estim Ld), MID: Config El
I DC (estim Lq), MID: Config El I DC positive max and MID: Config El I DC negative max currents. Frequency of
the AC signal set to default 500 Hz.

The function will output stator resistance Rs, direct inductance Ld , quadrature inductance Lq and Ldq
dependency map.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
24 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.9.4 Mode 3

This mode is manual. Rotor must be mechanically fixed after alignment with the first phase. Rs is not calculated
at this mode. The estimated inductances can be observed in the "Ld" or "Lq" scopes. The following parameters
can be changed during the runtime:

• MID: Config El DQ-switch - Axis switch for AC signal injection (0 for injection AC signal to d-axis, 1 for
injection AC signal to q-axis).

• MID: Config El I DC req (d-axis) - Required DC current in d-axis.
• MID: Config El I DC req (q-axis) - Required DC current in q-axis.
• MID: Config El I AC req - Required AC current injected to the d-axis or q-axis.
• MID: Config El I AC frequency - Required frequency of the AC current injected to the d-axis or q-axis.

8.10 Control structure modes
1. Select the scalar control in the "M1 MCAT Control" FreeMASTER variable watch.
2. Set the "M1 Application Switch" variable to "ON". The application state changes to “RUN”.
3. Set the required frequency value in the “M1 Scalar Freq Required” variable; for example, 15 Hz in the

“Scalar & Voltage Control” FreeMASTER project tree. The motor starts running.
4. Select the “Phase Currents” recorder from the “Scalar & Voltage Control” FreeMASTER project tree.
5. The optimal ratio for the V/Hz profile can be found by changing the V/Hz factor directly using the “M1 V/Hz

factor” variable. The shape of the motor currents should be close to a sinusoidal shape (Figure 17). Use the
following equation for calculation V/Hz factor:

where Uphnom is the nominal voltage, kfactor is ratio within range 0-100%, pp is the number of pole-pairs and
Nnom are the nominal revolutions. Changes V/Hz factor won't be propagated to the m1_pmsm_appconfig.h!

Figure 17. Phase currents
6. Select the “Position” recorder to check the observer functionality. The difference between the “Position

Electrical Scalar” and the “Position Estimated” should be minimal (see Figure 18) for the Back-EMF position
and speed observer to work properly. The position difference depends on the motor load. The higher the
load, the bigger the difference between the positions due to the load angle.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
25 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 18. Generated and estimated positions
7. If an opposite speed direction is required, set a negative speed value into the “M1 Scalar Freq Required”

variable.
8. The proper observer functionality and the measurement of analog quantities is expected at this step.
9. Enable the voltage FOC mode in the "M1 MCAT Control" variable while the main application switch "M1

Application Switch" is turned off.
10. Switch the main application switch on and set a non-zero value in the “M1 MCAT Uq Required” variable.

The FOC algorithm uses the estimated position to run the motor.

8.11 Alignment tuning
For the alignment parameters, navigate to the “Parameters” MCAT tab. The alignment procedure sets the rotor
to an accurate initial position and enables you to apply full start-up torque to the motor. A correct initial position
is needed mainly for high start-up loads (compressors, washers, and so on). The aim of the alignment is to have
the rotor in a stable position, without any oscillations before the startup.

1. The alignment voltage is the value applied to the d-axis during the alignment. Increase this value for a
higher shaft load.

2. The alignment duration expresses the time when the alignment routine is called. Tune this parameter to
eliminate rotor oscillations or movement at the end of the alignment process.

8.12 Current loop tuning
The parameters for the current D, Q, and PI controllers are fully calculated using the motor parameters and no
action is required in this mode. If the calculated loop parameters do not correspond to the required response,
the bandwidth and attenuation parameters can be tuned.

1. Lock the motor shaft.
2. Set the required loop bandwidth and attenuation and click the “Update target” button in the “Current loop”

tab. The tuning loop bandwidth parameter defines how fast the loop response is whilst the tuning loop
attenuation parameter defines the actual quantity overshoot magnitude.

3. Select the “Current Controller Id” recorder.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
26 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

4. Select the “Current Control” in the FreeMASTER project tree, select "CURRENT_FOC" in "M1 MCAT
Control" variable. Set the “M1 MCAT Iq required” variable to a very low value (for example 0.01), and set the
required step in “M1 MCAT Id required”. The control loop response is shown in the recorder.

5. Tune the loop bandwidth and attenuation until you achieve the required response. The example waveforms
show the correct and incorrect settings of the current loop parameters:
• The loop bandwidth is low (110 Hz) and the settling time of the Id current is long (Figure 19).

Figure 19. Slow step response of the Id current controller
• The loop bandwidth (400 Hz) is optimal and the response time of the Id current is sufficient (see

Figure 20).

Figure 20. Optimal step response of the Id current controller
• The loop bandwidth is high (700 Hz) and the response time of the Id current is very fast, but with

oscillation and overshoot (see Figure 21).

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
27 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 21. Fast step response of the Id current controller

8.13 Speed ramp tuning
1. The speed command is applied to the speed controller through a speed ramp. The ramp function contains

two increments (up and down) which express the motor acceleration and deceleration per second. If the
increments are very high, they can cause an overcurrent fault during acceleration and an overvoltage fault
during deceleration. In the “Speed” scope, you can see whether the “Speed Actual Filtered” waveform
shape equals the “Speed Ramp” profile.

2. The increments are common for the scalar and speed control. The increment fields are in the “Speed loop”
tab and accessible in both tuning modes. Clicking the “Update target” button applies the changes to the
MCU. An example speed profile is shown in Figure 22. The ramp increment down is set to 500 rpm/sec and
the increment up is set to 3000 rpm/sec.

3. The start-up ramp increment is in the “Sensorless” tab and its value is usually higher than that of the speed
loop ramp.

Figure 22. Speed profile

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
28 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.14 Open loop startup
1. The start-up process can be tuned by a set of parameters located in the “Sensorless” tab. Two of them

(ramp increment and current) are accessible in both tuning modes. The start-up tuning can be processed in
all control modes besides the scalar control. Setting the optimal values results in a proper motor startup. An
example start-up state of low-dynamic drives (fans, pumps) is shown in Figure 23.

2. Select the “Startup” recorder from the FreeMASTER project tree.
3. Set the start-up ramp increment typically to a higher value than the speed-loop ramp increment.
4. Set the start-up current according to the required start-up torque. For drives such as fans or pumps, the

start-up torque is not very high and can be set to 15 % of the nominal current.
5. Set the required merging speed—when the open-loop and estimated position merging starts, the threshold

is mostly set in the range of 5 % ~ 10 % of the nominal speed.
6. Set the merging coefficient—in the position merging process duration, 100 % corresponds to a half of

an electrical revolution. The higher the value, the faster the merge. Values close to 1 % are set for the
drives where a high start-up torque and smooth transitions between the open loop and the closed loop are
required.

7. Click the “Update Target” button to apply the changes to the MCU.
8. Select “SPEED_FOC” in the "M1 MCAT Control" variable.
9. Set the required speed higher than the merging speed.

10. Check the start-up response in the recorder.
11. Tune the start-up parameters until you achieve an optimal response.
12. If the rotor does not start running, increase the start-up current.
13. If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp increment, increase

the merging speed, and set the merging coefficient to 5 %.

Figure 23. Motor startup

8.15 BEMF observer tuning
1. The bandwidth and attenuation parameters of the BEMF observer and the tracking observer can be tuned.

Navigate to the "Sensorless" MCAT tab.
2. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is typically set to a value

close to the current loop bandwidth.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
29 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

3. Set the required bandwidth and attenuation of the tracking observer—the bandwidth is typically set in the
range of 10 – 20 Hz for most low-dynamic drives (fans, pumps).

4. Click the “Update target” button to apply the changes to the MCU.
5. Select the “Observer” recorder from the FreeMASTER project tree and check the observer response in the

"Observer" recorder.

8.16 Speed PI controller tuning
The motor speed control loop is a first-order function with a mechanical time constant that depends on the
motor inertia and friction. If the mechanical constant is available, the PI controller constants can be tuned
using the loop bandwidth and attenuation. Otherwise, the manual tuning of the P and I portions of the speed
controllers is available to obtain the required speed response (see the example response in Figure 24). There
are dozens of approaches to tune the PI controller constants. The following steps provide an approach to set
and tune the speed PI controller for a PM synchronous motor:

1. Select the “Speed Controller” option from the FreeMASTER project tree.
2. Select the “Speed loop” tab.
3. Check the “Manual Constant Tuning” option—that is, the “Bandwidth” and “Attenuation” fields are disabled

and the “SL_Kp” and “SL_Ki” fields are enabled.
4. Tune the proportional gain:

• Set the “SL_Ki” integral gain to 0.
• Set the speed ramp to 1000 rpm/sec (or higher).
• Run the motor at a convenient speed (about 30 % of the nominal speed).
• Set a step in the required speed to 40 % of Nnom.
• Adjust the proportional gain “SL_Kp” until the system responds to the required value properly and without

any oscillations or excessive overshoot:
– If the “SL_Kp” field is set low, the system response is slow.
– If the “SL_Kp” field is set high, the system response is tighter.
– When the “SL_Ki” field is 0, the system most probably does not achieve the required speed.
– Click the “Update Target” button to apply the changes to the MCU.

5. Tune the integral gain:
• Increase the “SL_Ki” field slowly to minimize the difference between the required and actual speeds to 0.
• Adjust the “SL_Ki” field such that you do not see any oscillation or large overshoot of the actual speed

value while the required speed step is applied.
• Click the “Update target” button to apply the changes to the MCU.

6. Tune the loop bandwidth and attenuation until the required response is received. The example waveforms
with the correct and incorrect settings of the speed loop parameters are shown in the following figures:
• The “SL_Ki” value is low and the “Speed Actual Filtered” does not achieve the “Speed Ramp” (see

Figure 24).

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
30 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 24. Speed controller response—SL_Ki value is low, Speed Ramp is not achieved
• The “SL_Kp” value is low, the “Speed Actual Filtered” greatly overshoots, and the long settling time is

unwanted (see Figure 25).

Figure 25. Speed controller response—SL_Kp value is low, Speed Actual Filtered greatly overshoots
• The speed loop response has a small overshoot and the “Speed Actual Filtered” settling time is sufficient.

Such response can be considered optimal (see Figure 26).

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
31 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 26. Speed controller response—speed loop response with a small overshoot

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
32 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

9 Conclusion

This application note describes the implementation of the sensor and sensorless Field-Oriented Control of a 3-
phase PMSM on the NXP LPC860 with the FRDM-MC-LVPMSM NXP Freedom Development Platform. The
hardware-dependent part of the control software is described in Section 2. The motor-control application timing
is described in Section 3 and the peripheral initialization is described in Section 6. The motor user interface and
remote control using FreeMASTER are as follows.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
33 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

10 Acronyms and abbreviations

Acronym Meaning

ADC Analog-to-Digital Converter

ACIM Asynchronous Induction Motor

ADC_ETC ADC External Trigger Control

AN Application Note

BLDC Brushless DC motor

CCM Clock Controller Module

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

ENC Encoder

FOC Field-Oriented Control

GPIO General-Purpose Input/Output

LPIT Low-power Periodic Interrupt Timer

LPUART Low-power Universal Asynchronous Receiver/Transmitter

MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

PDB Programmable Delay Block

PI Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Machine

PWM Pulse-Width Modulation

QD Quadrature Decoder

TMR Quad Timer

USB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

IOPAMP Internal operational amplifier

Table 10. Acronyms and abbreviations

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
34 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

11 References

These references are available on www.nxp.com:

1. Sensorless PMSM Field-Oriented Control (document DRM148).
2. Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642).
3. NXP Automotive Math and Motor Control Library (AMMCLib) set (e.g. document Automotive Math and

Motor Control Library Set for S32K14x).

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
35 / 42

http://www.nxp.com
https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/AN4642
https://www.nxp.com/design/automotive-software-and-tools/nxp-automotive-math-and-motor-control-library-ammclib-set:AMMCLIB?tab=Design_Tools_Tab
https://www.nxp.com/design/automotive-software-and-tools/nxp-automotive-math-and-motor-control-library-ammclib-set:AMMCLIB?tab=Design_Tools_Tab

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

12 Useful links

1. MCUXpresso SDK for Motor Control www.nxp.com/sdkmotorcontrol
2. FRDM-MC-PMSM Freedome Development Platform
3. MCUXpresso IDE - Importing MCUXpresso SDK
4. MCUXpresso Config Tool
5. MCUXpresso SDK Builder (SDK examples in several IDEs) https://mcuxpresso.nxp.com/en/welcome
6. LPC5500 Series: Arm® Cortex®-M33 based Microcontroller Series for Mass Market, Leveraging 40nm

Embedded Flash Technology
7. LPC800 Series: Low-Cost Microcontrollers (MCUs) based on Arm® Cortex®-M0+ Cores
8. Real Time Control Embedded Software Motor Control and Power Conversion Libraries

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
36 / 42

https://www.nxp.com/sdkmotorcontrol
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33:LPC5500_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33:LPC5500_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc800-cortex-m0-plus-:MC_71785
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/real-time-control-embedded-software-motor-control-and-power-conversion-libraries:RTCESL

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

13 Revision history

Revision history summarizes the changes done to the document since the initial release.

Revision number Date Substantive changes

0 08/2022 Initial release

1 02/2023 New MCAT (for fractional application)
New MID (includes Pp assist and
electrical parameters estimation)

Table 11. Revision history

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
37 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

14 Copyright and permission

How To Reach Us
Home Page:
nxp.com
Web Support:
nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products
herein.
NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may
be provided in NXP data sheets and/or specifications can and do vary
in different applications, and actual performance may vary over time.
All operating parameters, including “typicals,” must be validated for
each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others.
NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address: nxp.com/SalesTermsand
Conditions.
While NXP has implemented advanced security features, all products may
be subject to unidentified vulnerabilities. Customers are responsible for
the design and operation of their applications and products to reduce the
effect of these vulnerabilities on customer’s applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to
minimize the risks associated with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C
BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale,
the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, Cold
Fire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape,
MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis,
MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9,
Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, Design
Start, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or
registered trademarks of Arm Limited (or its subsidiaries) in the US and/
or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.
org logos and related marks are trademarks and service marks licensed
by Power.org.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
38 / 42

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

15 Legal information

15.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

15.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

15.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
39 / 42

mailto:PSIRT@nxp.com

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Tables
Tab. 1. Available examples and control methods 1
Tab. 2. Linix 45ZWN24-40 motor parameters 2
Tab. 3. LPCXpresso860-MAX jumper settings 3
Tab. 4. Maximum CPU load (fast loop) 6
Tab. 5. MCAT motor parameters20
Tab. 6. Fault limits ... 20

Tab. 7. Application scales ... 20
Tab. 8. MID: Fault variable ..23
Tab. 9. DIAG: Fault Captured variable 23
Tab. 10. Acronyms and abbreviations34
Tab. 11. Revision history ...37

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
40 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figures
Fig. 1. Linix 45ZWN24-40 permanent magnet

synchronous motor ..2
Fig. 2. LPCXpresso860-MAX board 3
Fig. 3. Assembled system .. 4
Fig. 4. Hardware timing and synchronization on

LPCXpresso860-MAX 5
Fig. 5. Directory tree ...7
Fig. 6. Green “GO” button placed in top left-hand

corner .. 13
Fig. 7. FreeMASTER—communication is

established successfully13
Fig. 8. FreeMASTER communication setup

window ...14
Fig. 9. Default symbol file ...15
Fig. 10. FreeMASTER + MCAT layout 16
Fig. 11. Scalar control mode .. 17
Fig. 12. Voltage FOC control mode18
Fig. 13. Current (torque) control mode18
Fig. 14. Speed FOC control mode 19

Fig. 15. Position FOC control mode19
Fig. 16. MID FreeMASTER control 22
Fig. 17. Phase currents .. 25
Fig. 18. Generated and estimated positions26
Fig. 19. Slow step response of the Id current

controller ..27
Fig. 20. Optimal step response of the Id current

controller ..27
Fig. 21. Fast step response of the Id current

controller ..28
Fig. 22. Speed profile ... 28
Fig. 23. Motor startup ... 29
Fig. 24. Speed controller response—SL_Ki value is

low, Speed Ramp is not achieved 31
Fig. 25. Speed controller response—SL_Kp value

is low, Speed Actual Filtered greatly
overshoots ...31

Fig. 26. Speed controller response—speed loop
response with a small overshoot32

PMSMLPC860 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 24 February 2023
41 / 42

NXP Semiconductors PMSMLPC860
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Contents
1 Introduction ... 1
2 Hardware setup ... 2
2.1 Linix 45ZWN24-40 motor2
2.2 LPCXpresso860-MAX ..2
2.3 LPC board assembling 3
3 LPC800 series features and peripheral

settings ...5
3.1 LPC86X ..5
3.1.1 LPCXpresso860MAX - Hardware timing

and synchronization ...5
3.2 CPU load and memory usage 6
4 Project file and IDE workspace structure 7
4.1 PMSM project structure 7
5 Tools ... 9
5.1 Compiler warnings ...9
6 Motor-control peripheral initialization10
7 User interface .. 12
8 Remote control using FreeMASTER13
8.1 Establishing FreeMASTER communication 13
8.2 TSA replacement with ELF file 14
8.3 MCAT FreeMASTER interface (Motor

Control Application Tuning) 15
8.4 Motor Control Modes17
8.4.1 Control structure .. 17
8.5 Initial configuration setting and update 19
8.6 Switch between Spin and MID21
8.7 Identifying parameters of user motor 21
8.7.1 Motor parameter identification using MID 22
8.8 MID algorithms .. 23
8.8.1 Stator resistance measurement23
8.8.2 Stator inductances measurement 23
8.8.3 Number of pole-pair assistant23
8.9 Electrical parameters measurement control24
8.9.1 Mode 0 .. 24
8.9.2 Mode 1 .. 24
8.9.3 Mode 2 .. 24
8.9.4 Mode 3 .. 25
8.10 Control structure modes 25
8.11 Alignment tuning ..26
8.12 Current loop tuning ..26
8.13 Speed ramp tuning .. 28
8.14 Open loop startup ..29
8.15 BEMF observer tuning29
8.16 Speed PI controller tuning 30
9 Conclusion ...33
10 Acronyms and abbreviations34
11 References ... 35
12 Useful links ..36
13 Revision history .. 37
14 Copyright and permission38
15 Legal information ..39

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 24 February 2023

	1 Introduction
	2 Hardware setup
	2.1 Linix 45ZWN24-40 motor
	2.2 LPCXpresso860-MAX
	2.3 LPC board assembling

	3 LPC800 series features and peripheral settings
	3.1 LPC86X
	3.1.1 LPCXpresso860MAX - Hardware timing and synchronization

	3.2 CPU load and memory usage

	4 Project file and IDE workspace structure
	4.1 PMSM project structure

	5 Tools
	5.1 Compiler warnings

	6 Motor-control peripheral initialization
	7 User interface
	8 Remote control using FreeMASTER
	8.1 Establishing FreeMASTER communication
	8.2 TSA replacement with ELF file
	8.3 MCAT FreeMASTER interface (Motor Control Application Tuning)
	8.4 Motor Control Modes
	8.4.1 Control structure

	8.5 Initial configuration setting and update
	8.6 Switch between Spin and MID
	8.7 Identifying parameters of user motor
	8.7.1 Motor parameter identification using MID

	8.8 MID algorithms
	8.8.1 Stator resistance measurement
	8.8.2 Stator inductances measurement
	8.8.3 Number of pole-pair assistant

	8.9 Electrical parameters measurement control
	8.9.1 Mode 0
	8.9.2 Mode 1
	8.9.3 Mode 2
	8.9.4 Mode 3

	8.10 Control structure modes
	8.11 Alignment tuning
	8.12 Current loop tuning
	8.13 Speed ramp tuning
	8.14 Open loop startup
	8.15 BEMF observer tuning
	8.16 Speed PI controller tuning

	9 Conclusion
	10 Acronyms and abbreviations
	11 References
	12 Useful links
	13 Revision history
	14 Copyright and permission
	15 Legal information
	Tables
	Figures
	Contents

