
JN51xx Encryption Tool (JET)
User Guide

JN-UG-3081

Revision 1.7

24 February 2017

JN51xx Encryption Tool (JET)
User Guide

2 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
Contents

Preface 5
Organisation 5

Conventions 5

Acronyms and Abbreviations 6

Related Documents 6

Support Resources 6

Trademarks 6

1. An Introduction to JET 7
1.1 Purpose of JET 8

1.2 Modes of Operation 8
1.2.1 Binary Encryption Mode 8

1.2.2 Combine Mode 9

1.2.3 OTA Merge Mode 9

1.3 Use Cases of JET 10
1.3.1 Use Case 1: Single App with SD - Unencrypted 10

1.3.2 Use Case 2: Single App with Blank SD - Encrypted 11

1.4 Serialisation Data 12

2. Preparing an Application for JET 13
2.1 Adapting the Makefile 13

2.2 Adapting the Application Code 14
2.2.1 Serialisation Data 14

2.3 Setting Up Serialisation Data File 15

3. Creating an Application Image 19
3.1 Using Binary Encryption Mode 20

3.2 Using Combine Mode 21

3.3 Using OTA Merge Mode 22

3.4 OTA Options 26

4. Loading an Application Image 27
4.1 Flash Programming Tools/Devices 27

4.2 Programming the Flash Device 28
4.2.1 Setting Up the Serialisation Data 28

4.2.2 Writing to the Flash Device 28
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 3

Contents
Appendices 31

A. Use Cases 31
A.1 Use Case 1: Single App with SD - Unencrypted 31
A.2 Use Case 2: Single App with Blank SD - Encrypted 31
A.3 Use Cases 3-6: Adding OTA Header to an App Binary 31

B. Creating a NULL OTA Image 33
B.1 Creating an Unsigned NULL Image 33
B.2 Creating a Signed NULL Image 34

C. AP-114 Installation 35
C.1 Installing the ApPC Software 35
C.2 Installing the Device Drivers 36
C.3 AP-114 to JN516x/7x Connection 37
4 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
Preface

This manual describes the operation of the JN51xx Encryption Tool (JET) which can
be used to produce encrypted and/or merged binary image files to be programmed
into the Flash memory device (internal or external) of an NXP JN51xx wireless
microcontroller. The tool is currently included in the JN516x and JN517x Software
Developer’s Kits (SDKs).

Organisation

This manual consists of 4 chapters and 3 appendices, as follows:

 Chapter 1 introduces JET and its modes of operation

 Chapter 2 describes how to prepare files for input into JET

 Chapter 3 details the operational modes of JET

 Chapter 4 describes how to load binary images produced by JET into a Flash
memory device

 The Appendices provide a number of use cases of JET, how to create a NULL
OTA image and installation instructions for the Atomic Programming AP-114
device

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 5

Preface
Acronyms and Abbreviations

API Application Programming Interface

CA Certificate Authority

CRC Cyclic Redundancy Check

HA Home Automation

JET JN51xx Encryption Tool

OTA Over-the-Air

PCB Printed Circuit Board

SDK Software Developer’s Kit

SE Smart Energy

SPI Serial Peripheral Interface

SSB Second-Stage Bootloader

ZLL ZigBee Light Link

Related Documents

JN-UG-3098 BeyondStudio for NXP Installation and User Guide

JN-UG-3109 JN517x LPCXpresso Installation and User Guide

JN-UG-3099 JN51xx Production Flash Programmer User Guide

JN-UG-3007 JN51xx Flash Programmer User Guide

JN-UG-3103 ZigBee Cluster Library User Guide (for ZLL/HA/SE)

JN-UG-3115 ZigBee Cluster Library User Guide (for ZigBee 3.0)

JN-UG-3059 ZigBee Smart Energy User Guide

Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity area of the NXP web site:

www.nxp.com/products/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address,
unless otherwise stated.

Trademarks

All trademarks are the property of their respective owners.
6 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
1. An Introduction to JET

The JN51xx Encryption Tool (JET) is a command-line utility which provides a means
of preparing binary files for programming into the Flash memory device (internal or
external) of an NXP JN516x or JN517x wireless microcontroller.

The tool is provided as an executable file, JET.exe, in the JN516x or JN517x Software
Developer’s Kit (SDK) at the following location:

<JN51xx_SDK_ROOT>/Tools/OTAUtils/

where <JN51xx_SDK_ROOT> is the directory in which the SDK is installed.

The executable can be launched from the above ‘OTAUtils’ file path.

Unencrypted binary images produced by JET can be loaded into JN516x/7x Flash
memory using any of the following JN51xx Flash Programmer tools:

 JN51xx Flash Programmer built into 'BeyondStudio for NXP' and described in
the BeyondStudio for NXP Installation and User Guide (JN-UG-3098)

 JN51xx Flash Programmer built into LPCXpresso (for JN517x) and described
in the JN517x LPCXpresso Installation and User Guide (JN-UG-3109)

 JN51xx Production Flash Programmer (JN-SW-4107) described in the JN51xx
Production Flash Programmer User Guide (JN-UG-3099)

 JN51xx Flash Programmer (JN-SW-4007) described in the JN51xx Flash
Programmer User Guide (JN-UG-3007)

Alternatively, a third party device, such as the Atomic Programmer AP-114 device, can
be used to program JN516x/7x external Flash memory. The above JN51xx Flash
Programmers (JN-SW-4107 and JN-SW-4007) always program the external Flash
memory from offset zero, whereas the Atomic Programmer tool can program the Flash
memory from any offset.

Note: JET is only needed to prepare a binary image that
requires certain pre-processing (encryption or merger)
before being loaded into Flash memory. Single
unencrypted images can usually be programmed into
Flash memory directly (without JET).

Note: The Flash programmer within ‘BeyondStudio for
NXP' and LPCXpresso cannot be used to erase and re-
program JN516x/7x external Flash memory. However,
the standalone JN51xx Flash Programmer utilities
(JN-SW-4107 and JN-SW-4007) can be used to
program JN516x/7x internal and external Flash memory.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 7

Chapter 1
An Introduction to JET

1.1 Purpose of JET

JET can be used to perform the following operations on a binary image:

 To encrypt a binary file before it is stored in JN516x/7x external Flash memory -
this secures the application (and associated data), which is particularly
recommended for ZigBee PRO Smart Energy

 To combine two or more binary files (unencrypted) into a single binary image -
this facility is used for ZigBee Over-the-Air (OTA) Upgrade, which may involve
the programming of a single image containing more than one software
component

 To generate an OTA upgrade image (signed or unsigned, with or without CRC)

The above features of JET are described in more detail in Section 1.2, which outlines
the available operational modes of the tool.

1.2 Modes of Operation

JET offers three modes of operation:

 Binary Encryption mode, described in Section 1.2.1

 Combine mode, described in Section 1.2.2

 OTA Merge mode, described in Section 1.2.3

1.2.1 Binary Encryption Mode

In Binary Encryption mode, JET takes an application binary file as input and produces
an encrypted binary file as output. The input file is a normal application binary file built
for the JN516x/7x device.

In this mode, the user is required to provide:

 unencrypted binary application file

 name of the encrypted output file

 encryption key

 initialisation vector

The encryption key is stored in the index sector from where it is retrieved during
decryption. The key comprises four 32-bit words, which are stored in Little Endian
format.

The use of JET in Binary Encryption mode is detailed in Section 3.1.

Note: For more information on ZigBee OTA Upgrade,
refer to the chapter on this cluster in the ZigBee Cluster
Library User Guide (JN-UG-3103 or JN-UG-3115).
8 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
1.2.2 Combine Mode

In Combine mode, JET takes an application binary file and a configuration file
(containing serialisation data) as inputs, and produces a binary file as its output which
incorporates the serialisation data. The input file is an unencrypted application image
file built for the JN516x/7x device and the configuration file is as detailed in
Section 2.3.

The use of JET in Combine mode is detailed in Section 3.2.

1.2.3 OTA Merge Mode

OTA Merge mode allows the creation of binary images for applications which support
the ZigBee Over-the-Air (OTA) Upgrade cluster. This mode can be used to produce a
new OTA server image by combining the following unencrypted images:

 initial server image

 client upgrade application

The combined image can then be loaded into the external Flash memory of the
JN516x/7x device on the OTA server node. The initial server image will be loaded into
the internal Flash memory of the JN516x/7x device.

A client upgrade image must have an OTA header attached at the beginning of the
image. This image must also be put at the correct offset in Flash memory.

If one of the standalone JN51xx Flash Programmer utilities (JN-SW-4107 or
JN-SW-4007) is used to load the binary images, the programming must always start
from the beginning of Flash memory. In this case, a new client image which is to be
loaded onto the server must first be combined with the server application so that Flash
memory can be completely re-written. Other Flash programming tools, such as the
Atomic Programming AP-114 device, may allow a new client image to be written
directly to the appropriate offset in Flash memory on the server, without a merger and
complete re-write.

An application image contains a 4–byte version number field at the start of the image,
which is not needed. The standalone JN51xx Flash Programmer utilities automatically
strip out this field but other Flash programming tools, such as the AP-114 device, do
not. OTA Merge mode provides an option to remove this field when using such tools.

The use of JET in OTA Merge mode is detailed in Section 3.3. Information on ZigBee
OTA Upgrade can be found in the ZigBee Cluster Library User Guide (JN-UG-3103 or
JN-UG-3115).

Note: This mode is only likely to be used during
development to test the OTA upgrade functionality.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 9

Chapter 1
An Introduction to JET

1.3 Use Cases of JET

This section contains flow diagrams that illustrate ‘use cases’ for JET. Often, it is
necessary to use the tool in a succession of modes. The required JET commands for
the illustrated cases are detailed in Appendix A.

The scenarios that produce unencrypted outputs are likely to be use in a development
environment, while those that produce encrypted outputs are likely to be used in a
production environment.

Note that the following abbreviations are used in the flow diagrams:

 EncKey – Encryption Key

 SData or SD – Serialisation Data

 App1 - Application image 1

1.3.1 Use Case 1: Single App with SD - Unencrypted

In this case, a single application binary is first combined with serialisation data using
Combine mode. The final (unencrypted) output file is written to Flash memory.

Figure 1: Single Application with SD - Unencrypted

Single Application Binary
– With Serialisation Data –

Unencrypted

Combine the SData with App1
(mode: combine)

Program the output binary into
Flash memory using the

Flash Programmer
10 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
1.3.2 Use Case 2: Single App with Blank SD - Encrypted

In this case, a single application binary with no serialisation data is encrypted using
Binary Encryption mode and merged with blank serialisation data using combine
mode. The encrypted output file is written to Flash memory.

Note: Since there is no serialisation data, the space
reserved for this data in the application image is left
blank (all Fs).

Figure 2: Single Application with Blank SD - Encrypted

Encrypt App1 with EncKey
(mode: bin)

Single Application Binary
– Blank Serialisation Data –

Encrypted
e.g. OTA Client Application

Program the Encrypted App1
into the relevant
sector of Flash

This image is likely to be
transferred to the JN51xx
via a peripheral interface

during run-time

Merge Blank Serialisation
Data with encrypted image

(mode: combine)
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 11

Chapter 1
An Introduction to JET

1.4 Serialisation Data

An application may require information which allows it to identify and authenticate the
host device on which the application is intended to be run - this is particularly the case
for a ZigBee Smart Energy (SE) application which requires a high level of security.
This information is called ‘serialisation data’ and it must reside in the Flash memory of
the host device along with the application binary.

The serialisation data contains the following information:

This information is unique for each JN516x/7x device and is provided as follows:

 IEEE/MAC address: This 64-bit address is provided by NXP.

 Pre-configured link key: This 128-bit key is derived (using an algorithm) from
an installation code consisting of a random sequence of hexadecimal values.
The installation code is printed on a label for the device during manufacture.
The derived key is also stored in Flash memory for the device. The key must be
derived again from the installation code in the same way in order to be included
in the serialisation data.

 Security certificate: This is obtained from a Certificate Authority (CA) such as
Certicom by submitting the IEEE/MAC address of the device. The certificate
includes this address as well public keys for the device and the CA.

 Private key: This is obtained from the CA along with the security certificate.

Further details of the above security certificate and keys can be found in the ZigBee
Smart Energy User Guide (JN-UG-3059).

For JN516x/7x, only the private key must be encrypted, using the device’s index
sector key. JET provides an option in Combine mode for encrypting the private key.

Preparing the serialisation data for input to JET is described in Section 2.3.

Note: The JET software provided in the JN516x ZigBee
Smart Energy SDK (JN-SW-4164) supports the use of
serialisation data for Smart Energy security. However,
you will need to request certain data from a Certificate
Authority (see below).

Data Component Size (bytes) Domain

IEEE/MAC address (if not programmed into eFuse) 8 Device

Pre-configured link key (derived from an installation code) 16 SE-specific

Security certificate (from Certificate Authority such as Certicom) 48 SE-specific

Private key (associated with security certificate) 21 SE-specific

Security certificate (from Certificate Authority such as Certicom) 74 SE-specific

Private key (associated with security certificate) 36 SE-specific

Table 1: Serialisation Data
12 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
2. Preparing an Application for JET

In order to use JET to encrypt a binary application and/or merge binary files, you must
prepare the application and its associated files for input into JET:

 Adapt the makefile for the application, as described in Section 2.1

 Adapt the application code itself, as described in Section 2.2

 Prepare a serialisation data file (if required), as described in Section 2.3

2.1 Adapting the Makefile

The makefile for your application needs to reserve locations in JN516x/7x Flash
memory where the OTA header and security certificate/keys (if required) will be
stored. To do this, add the following tags for each $(OBJCOPY)in the makefile:

-j .ro_mac_address -j .ro_ota_header -j .ro_se_lnkKey
-j .ro_se_cert -j .ro_se_pvKey -j .ro_se_283k1_cert
-j .ro_se_283k1_pvKey

where:

 -j .ro_mac_address refers to the device’s MAC address.

 -j .ro_ota_header refers to the OTA header and is only required when
using the ZigBee OTA Upgrade cluster.

 The remaining tags relate to the serialisation data required for encryption (see
Section 1.4) and have the following meanings:

 -j .ro_se_lnkKey refers to the pre-configured link key

 -j .ro_se_cert refers to a security certificate

 -j .ro_se_pvKey refers to the private key associated with the above
certificate

 -j .ro_se_283k1_cert refers to a security certificate

 -j .ro_se_283k1 refers to the private key associated with the above
certificate

These five tags are primarily needed for Smart Energy applications - for more
information on Smart Energy security, refer to the ZigBee Smart Energy User
Guide (JN-UG-3059).

If required, these tags should be added after -j .vsr_handlers and before
-j .rodata.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 13

Chapter 2
Preparing an Application for JET

2.2 Adapting the Application Code

This section describes the adaptations to application code that are needed to use
security-related serialisation data (on any device).

2.2.1 Serialisation Data

The makefile updates described in Section 2.1 ensure that the security-related
serialisation data place-holders will be included within the application image. These
place-holders will be populated either during production programming or by JET when
used in Combine mode. In order for the application to access these place-holders, the
following must be defined within the code:

PUBLIC uint32 au32SeZcertificate[48] __attribute__ ((section
(".ro_se_cert")));

uint8* au8Certificate = (uint8*)au32SeZcertificate;

PUBLIC uint32 au32SePrvKey[21] __attribute__ ((section
(".ro_se_pvKey")));

uint8* au8PrivateKey = (uint8*)au32SePrvKey;

PUBLIC uint8 au8LnkKeyArray[16] __attribute__ ((section
(".ro_se_lnkKey")));

PUBLIC uint8 au8Sect23k1Certificate[74] __attribute__ ((section
(".ro_se_283k1_cert")))

PUBLIC uint8 au8Sect23k1PrivateKey[36] __attribute__ ((section
(".ro_se_283k1_pvKey")))

The elements of the above arrays must be set to 0xFF, to allow the production
programming of serialisation data. Alternatively, to aid application development, the
0xFF values can be replaced with hardcoded serialisation data. For an example of
this, refer to any of the app_certificates.h files in the Application Note ZigBee Smart
Energy HAN Solutions (JN-AN-1135).

The following is also required for JN516x/7x devices:

PUBLIC uint8 au8DeviceMacAddress[8] __attribute__ ((section
(".ro_mac_address")))

The above MAC address container can be over-ridden in the application by calling the
following function:

ZPS_vSetOverrideLocalMacAddress(au8DeviceMacAddress);
14 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
2.3 Setting Up Serialisation Data File

Serialisation data is required for a ZigBee PRO Smart Energy (SE) application which
is to use SE security and for any application in which the IEEE/MAC address of the
host device(s) must be encoded (for example, if this address is not available in eFuse
on the device). For an introduction to serialisation data, refer to Section 1.4.

The serialisation data for a device consists of up to four components (the last three
components will be required only if security is to be implemented):

 IEEE/MAC address

 Security certificate

 Private key (associated with certificate)

 Pre-configured link key

This data is obtained and assembled as described below. Ultimately, JET must
reference the data for all relevant devices through a single configuration file.

Step 1 Produce a file containing the IEEE/MAC address(es) for the host device(s)

The 64-bit IEEE/MAC addresses for all the devices on which the application is to run
should be listed in a text file called mac.txt. This file contains one IEEE/MAC address
per line, as illustrated below:

00158d0000000001

00158d0000000002

00158d0000000003

If the security components of the serialisation data are required, continue to the next
step, otherwise go to Step 4.

Note: The JET software provided in the JN516x ZigBee
Smart Energy SDK (JN-SW-4164) supports the use of
serialisation data for Smart Energy security. However,
you will need to request certain data from a Certificate
Authority (see below).
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 15

Chapter 2
Preparing an Application for JET

Step 2 Obtain the security certificate(s) and associated private key(s) from Certicom

Submit the mac.txt file to a Certificate Authority (CA), such as Certicom
(www.certicom.com), to request a security certificate and associated private key for
each device with a listed address.

Certicom will return two text files, each containing the relevant data values for the
devices, listed in the same device order as in the mac.txt file:

 cert.txt, which lists the security certificates, one certificate per line - for
example:

0207b2e0472c4bf90c0bacc25436547815fd7702cbfa0022080c9df367ed5445
535453454341c327a4e617f82378ec98

02068c968f6dfc191ff646881918f364ba4ef5e52769304367e78348fc455445
535453454341348f56c2374945bc9290

020363366ca613ffa9249990d7a454829fe0d9b2e874921bc71b32f56c235445
53545345434174865191c2dc72e3dd37

030785a63508b65d6d66cd7e098f27da653d70b13f7773da29260a2ce93d5445
53545345434123d649ca123f46e5732d

 key.txt, which lists the associated private keys, one key per line - for example:

02b08cd381b00593a6b3e1ab04a5a7ddd0a9f0834

02b9475dc6346089d5d3c278ac83544b7a5bfa97de

009c399b93536f1855a65b7b786f56fe75be52943e

012d7c171cb5973e38586cf31efc9eace2f0d58d7a

Step 3 Produce a file containing the pre-configured link key(s) for the host device(s)

For each host device, generate the 128-bit pre-configured link key from the installation
code for the device. The installation code consists of 12, 16, 24 or 32 random hex
digits (followed by a 4-digit checksum of the random digits) and is printed on a label
distributed with the device. The link key is pre-programmed into Flash memory for the
device during manufacture and you must use the same algorithm as used by the
manufacturer to derive the link key from the installation code.

List the link keys for the host devices in a text file called link.txt, with one key per line
and listed in the same device order as in the mac.txt file, as illustrated below:

00112233445566778899aabbccddeeff

10112233445566778899aabbccddeeff

20112233445566778899aabbccddeeff

Step 4 Produce a configuration file which references the serialisation data file(s)

Create a text file which collects together all the serialisation data for the application by
referencing the above files. This ‘configuration file’ will act as an input to JET.

The configuration file must list the serialisation data files and for each, give the
address of the start location in Flash memory where its data will be stored and the
length of the data (in bytes). The file can be named as desired (e.g. config.txt).

The exact contents of the configuration file depend on the target device type,
examples are provided below:
16 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
For JN516x/7x without OTA Upgrade Cluster:

MACaddr.txt,0044,8

LinkKey.txt,0054,16

ZigbeeCert.txt,0064,48

PrivateKey.txt,0094,21

ZigbeeCert2.txt 0104,74

PrivateKey2.txt 0154,36

For JN516x/7x with OTA Upgrade Cluster:

MACaddr.txt,0044,8

LinkKey.txt,00a4,16

ZigbeeCert.txt,00b4,48

PrivateKey.txt,00e4,21

ZigbeeCert2.txt 0104,74

PrivateKey2.txt 0154,36

Note: If security is not to be implemented, the
configuration file need only contain details of the
IEEE/MAC address file.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 17

Chapter 2
Preparing an Application for JET

18 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
3. Creating an Application Image

This chapter describes how to use JET in the modes introduced in Section 1.2:

 Binary Encryption mode - see Section 3.1

 Combine mode - see Section 3.2

 OTA Merge mode - see Section 3.3

Further options that are required for OTA Upgrade are presented in Section 3.4.

To use the tool, first launch a command-line window on your PC.

Note 1: JET can be run from any directory. The example
commands in this chapter assume that all input files and
the JET.exe file are located in the same directory.

Note 2: For command-line help when using the tool,
enter JET.exe -h at the command prompt.

Note 3: In the case of the JN516x/7x device, encryption
of the device’s own application binary is not necessary.
Encryption is only required for OTA upgrade images, as
they will be stored in external Flash memory.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 19

Chapter 3
Creating an Application Image

3.1 Using Binary Encryption Mode

In Binary Encryption mode (bin), JET takes an application binary file as input and
produces an encrypted binary file as output (see Section 1.2.1).

The tool is run in this mode by entering the following on the command line:

where:

 -m bin is the desired mode of JET: Binary Encryption mode

 -v <device type> is the device type, as one of the following strings:

 JN516x

 JN517x

 -f <input filename>.bin is the name of input binary file which is to be
encrypted

 -e <output filename>.bin is the name of the encrypted output file to be
produced

 -k <encryption key> is the encryption key to be used. This key comprises
four 32-bit words and must be specified as a hexadecimal number in Little
Endian format (for an example, see below). You can prefix this number with '0x'
to indicate a hex value, if you wish

 -i <ivector> is the initialisation vector for encryption which must be
specified for the JN516x/7x devices (note that the 8 least significant
hexadecimal digits of this value must be zero)

If the encrypted binary file is to be used as an OTA Upgrade image (for example, an
upgrade image for an OTA Upgrade cluster client) then further options must be added
to the JET.exe command. These options are described in Section 3.4.

Example Command

The following example illustrates the above command for Binary Encryption mode:

JET.exe -m bin -v JN516x -f input.bin -e output.bin
-k 12345678abcdef12aaaaaaaabbbbbbbb
-i 00000010111213141516171800000000

JET.exe -m bin -v <device type> -f <input filename>.bin
-e <output filename>.bin -k <encryption key> -i <ivector>

Note: Since the encryption key must be specified in
Little Endian format, ‘12345678’ represents the least
significant word of the 4-word key in the example.
20 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
3.2 Using Combine Mode

In Combine mode (combine), JET allows an unencrypted application binary file and
a configuration file containing serialisation data to be combined into a single
unencrypted binary file. An option exists in this mode which allows the output file to be
encrypted in the future.

The tool is run in this mode by entering the following on the command line:

where:

 -m combine is the desired mode of JET: Combine mode

 -v <device type> is the device type, as one of the following strings:

 JN516x

 JN517x

 -f <application filename>.bin is the name of input application binary
file, which is unencrypted

 -x <config filename>.txt is the name of the input configuration file
which contains the serialisation data

 -a <padding> indicates whether the data is to be padded to align it to a 16-
byte boundary, so that it can be encrypted in the future: ‘1’ padded, ‘0’ not
padded

 -g <Private Key Encrypt Option> specifies whether or not to encrypt
the private key: ‘1’ encrypted, ‘0’ not encrypted

 -k <Encryption Key> key used for encrypting private key

The tool produces an output binary file output<MAC address>.bin, where the
filename contains the MAC address of the target device for the image.

Example Command

The following example illustrates the above command for Combine mode:

JET.exe -m combine -f IPD_NODE_JN5168.bin -x config.txt -v JN516x
-g 1 -k 0x11111111222222223333333344444444

JET.exe -m combine -v <device type> -f <application filename>.bin
-x <config filename>.txt -a <padding> -g <private key encrypting
option> -k <encryption key>
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 21

Chapter 3
Creating an Application Image

3.3 Using OTA Merge Mode

OTA Merge mode (otamerge) allows the creation of a binary image for the ZigBee
OTA Upgrade cluster by merging two separate components into a single file (see
Section 1.2.3). The input files can be provided both encrypted or both unencrypted, in
which case the output file will be encrypted or unencrypted, respectively.

The tool is run in this mode by entering the following on the command line:

where:

 -m otamerge is the desired operational mode of JET: OTA Merge mode

 -v <device type> is the device type, as one of the following strings:

 JN516x

 JN517x

 -s <input filename1>.bin is the name of the first input binary file or the
initial OTA cluster server image

 -c <input filename2>.bin is the name of the second input binary file,
normally the cluster server application or client application

 -o <output filename>.bin can be optionally used to specify the name of
the output file to be produced (if this is not specified, the options -u, -t, -n
below will be used to generate the output filename)

 -i <ivector> is the initialisation vector for encryption which must be
specified for the JN516x (note that the 8 least significant hexadecimal digits of
this value must be zero)

 --sector_size=SECTOR_SIZE is the sector size (in bytes) to which the
client image must be aligned

 --sign_integrity <sign or integrity> updates the image size to
accommodate the signature and signature certificate fields or the integrity field
(for image signing, must be used with the -x option):

 0 - No sign or integrity code (default)

 1 - Image Signature for Curve 1

 2 - Image Signature for Curve 2

 3 - Image Integrity code

 -x <config filename>.txt is the name of the input configuration file
which contains the signing data for use with the --sign_integrity option

JET.exe -m otamerge -v <device type> -s <input filename1>.bin
-c <input filename2>.bin -o <output filename>.bin -i <ivector>
--sector_size=SECTOR_SIZE --sign_integrity <sign or integrity>
-x <config filename>.txt -p <Flash prog> --ota --embed_hdr
--donotembedcrc
22 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
 -p <Flash prog> indicates whether JET is to strip out the 4-byte version
number field at the start of an image for a JN516x/7x device - this setting
depends on the tool to be used to load the output image into Flash memory:

 ‘0’ instructs JET to leave the field in the file and is for use with a standalone
JN51xx Flash Programmer utility which strips out the field itself (default)

 ‘1’ instructs JET to strip out the field and is for use with programming tools
that do not themselves remove the field (e.g. AP-114)

 --ota incorporates the OTA header at the beginning of the application binary
as well as the tag headers (tag id, e.g. 0x0000 and tag length). This option
should be used for generating an OTA upgrade binary

 --embed_hdr embeds the OTA header in the output file

 --donotembedcrc omits the CRC value from the output image (by default,
the CRC value is included in both encrypted and unencrypted images) - this
option can only be used in conjunction with --embed_hdr (above)

The options for generating the output filename are described below.

For all the application binaries which support the OTA Upgrade cluster, the OTA
header must be embedded in the actual image.

Output Filename

The output filename can be optionally specified as part of the above JET command
using the -o option. If this option is not specified, the OTA options -u, -t, -n
(described in Section 3.4) will be used to generate an output filename of the format:

UUUU-TTTT-NNNNNNNN-upgradeMe.zigbee

where:

 UUUU is the manufacturer ID specified using the -u option

 TTTT is the image type specified using the -t option

 NNNNNNNN is the file version specified using the -n option and has the format
indicated in Section 3.4

 Each of the above values is expressed in hexadecimal and in upper case

 The file extension of the generated output filename is .zigbee

 If any of the above three options is not specified, the default value for that
option will be used

For example, if the following command is entered

JET.exe -m otamerge -v JN516x -s app1.bin -c app2.bin -u 0x4A4E
-t 0x5168 -n 0x15050126 --ota --embed_hdr

then the generated output filename will be:

4A4E-5168-15050126-upgradeMe.zigbee
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 23

Chapter 3
Creating an Application Image

Image Signing

The --sign_integrity option used alone will modify the output file size to include
space for the signing fields, but these fields will not contain any signing data. To
populate these fields, the -x option must be used to provide an input configuration file
containing the following data in the following order:

 Private key (associated with certificate)

 IEEE/MAC address of signer (provided in Little Endian format)

 Security certificate of signer

This configuration file is created as described in Section 2.3.

JET will produce two output files - one containing an unsigned image (contains space
for signing fields but no data) and one containing a signed image, where the filename
of the latter is prefixed with Signed_.

For example, the command

JET -m otamerge --sign_integrity 1 -x sign_config.txt --ota
--embed_hdr -c IPD_NODE_JN5168.bin -u 0x4A4E -t 0x5168 -n 0x15050126
-o output.bin

will result in the output files output.bin (unsigned) and Signed_output.bin (signed).

CRC Value

A Cyclic Redundancy Check (CRC) value is included in all encrypted and unencrypted
images, by default. In OTA Merge mode, the CRC value can be left out of the output
image by incorporating the --donotembedcrc option. This option can only be used
in conjunction with the --embed_hdr option (embed OTA header).

An example command to create an output image with no CRC value is:

JET.exe -m otamerge -v JN516x -s input_file1.bin -c input_file2.bin
-o output_file_with_no_CRC.bin --ota --embed_hdr --donotembedcrc

Example Commands

The examples below for show a sequence of commands to create encrypted binary
images for a (Smart Energy) IPD and Metering Device, which are acting as the OTA
Upgrade cluster client and server respectively, and run on a JN5168 device. The
output binaries should be loaded into JN5168 Flash memory using one of the
standalone JN51xx Flash Programmer utilities (which automatically strip out the
4-byte version number field at the start of the image).

:::::: Server Preparation ::::::

REM add serial data to the METER binary

JET.exe -m combine -f METER_NODE_JN5168.bin -x configOTA_ESP.txt
-v JN516x -g 1 -k 0x11111111222222223333333344444444

REM Create a Server binary file which will be used to program
internal Flash

JET.exe -m otamerge --embed_hdr -c output0000000000000002.bin
-o Server.bin -v JN516x -n 1
24 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
pause

:::::: Server Preparation - END ::::::

:::::: CLIENT SIDE ::::::

REM add serial data to the IPD binary

JET.exe -m combine -f IPD_NODE_JN5168.bin -x configOTA_IPD.txt
-v JN516x -g 1 -k 0x11111111222222223333333344444444

REM Create a client file which will be used to program internal Flash

JET.exe -m otamerge --embed_hdr -c output0000000000000001.bin -o
Client.bin -v JN516x -n 1

:::::: CLIENT SIDE End ::::::

:::::: Upgrade Image Preparation ::::::

REM Prepare an upgrade image with higher version number embedded in
it

JET.exe -m otamerge --embed_hdr -c IPD_NODE_JN5168.bin
-o UpGradeImagewithOTAHeader.bin -v JN516x -n 2

REM Encrypt the data for the upgrade image

JET.exe -m bin -f UpGradeImagewithOTAHeader.bin
-e Enc_UpGradeImagewithOTAHeader.bin
-k 0x11111111222222223333333344444444
-i 00000000100000000000000000000000 -v JN516x

REM Put 0xFF at the location of serialisation data after encryption,
so that the original data can be copied from the existing image

JET.exe -m combine -f Enc_UpGradeImagewithOTAHeader.bin
-x configOTA6x_BLANK_IPD.txt -v JN516x

REM Create the upgrade image to merge with the encrypted server, let
the image have the version number

JET.exe -m otamerge --ota -c outputffffffffffffffff.bin
-o OTA_ENC_UpGradeImagewithOTAHeader.bin -v JN516x -n 2

:::::: Upgrade Image Preparation -END ::::::
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 25

Chapter 3
Creating an Application Image

3.4 OTA Options

If a file to be encrypted using Binary Encryption mode (Section 3.1) is to be used as
an OTA Upgrade image (for example, an upgrade image for an OTA Upgrade cluster
client) then further options must be added to the JET.exe command. These options
relate to the contents of the OTA header and are as follows:

 -u MANUFACTURER, --manufacturer=MANUFACTURER is the
manufacturer code (default: 0x4A4E)

 -t IMAGE_TYPE, --image_type=IMAGE_TYPE is the OTA header image
type (user-defined)

 -r HEADER_VERSION, --Header_Version=HEADER_VERSION is the OTA
header version (default: 0x0100)

 -n FILE_VERSION, --File_Version=FILE_VERSION is the OTA file
version - for format, see below (default: 0x1)

 -z STACK_VERSION, --Stack_Version=STACK_VERSION is the OTA
stack version (default: 0x002)

 -d MAC, --destination=MAC is the IEEE/MAC address of the destination
node

 --security=VERSION is the security credential version

 --hardware=MIN MAX is the hardware minimum and maximum versions

 --ota puts the OTA header at the start of the image in any of the encryption
modes. The OTA header is embedded inside the image before encrypting the
image (default: false)

File Version Format

The OTA file version, specified using the -n option, has the format illustrated in the
following examples:

 0x10053519 represents application release 1.0, build 05,
with stack release 3.5 b19

 0x10103519 represents application release 1.0, build 10,
with stack release 3.5 b19

 0x10103701 represents application release 1.0, build 10,
with stack release 3.7 b01
26 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
4. Loading an Application Image

This chapter describes how to load a binary image, prepared using JET, into the Flash
memory associated with of a JN516x/7x device.

4.1 Flash Programming Tools/Devices

The Flash memory connected to a JN516x/7x device is normally programmed using
one of the following JN51xx Flash Programmer software tools:

 JN51xx Flash Programmer built into 'BeyondStudio for NXP' and described in
the BeyondStudio for NXP Installation and User Guide (JN-UG-3098)

 JN51xx Flash Programmer built into LPCXpresso (for JN517x) and described
in the JN517x LPCXpresso Installation and User Guide (JN-UG-3109)

 JN51xx Production Flash Programmer (JN-SW-4107) described in the JN51xx
Production Flash Programmer User Guide (JN-UG-3099)

 JN51xx Flash Programmer (JN-SW-4007) described in the JN51xx Flash
Programmer User Guide (JN-UG-3007)

The above standalone JN51xx Flash Programmers (JN-SW-4107 and JN-SW-4007)
always program the JN516x/7x external Flash memory from offset zero. In order to
overcome this limitation, NXP recommend the programming of external Flash devices
using a third-party Flash programmer which can program the Flash memory from any
offset - for example, the Atomic Programming AP-114 device which can be ordered
from www.atomicprogramming.com. This allows the Flash device to be programmed
directly via the SPI interface of the JN516x/7x device.

The remainder of this chapter describes loading a binary file into JN516x/7x external
Flash memory using the Atomic Programming AP-114 device. Use of this device
involves connecting the device to both a source PC and the target Flash memory
device. Software for the AP-114 must be installed on the PC - the Programming
Centre (ApPC) software and the necessary device drivers. Installation instructions for
this software are provided in Appendix B.

Note: The Flash programmer within ‘BeyondStudio for
NXP' and LPCXpresso cannot be used to erase and re-
program JN516x/7x external Flash memory.

Note: PCB design should accommodate access to the
SPI bus. SPI programming has the added advantage of
higher baud-rates. Another advantage of using a third-
party SPI Flash programmer is that the Flash devices
can be programmed prior to PCB assembly.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 27

Chapter 4
Loading an Application Image

4.2 Programming the Flash Device

This section describes how to use the Atomic Programming AP-114 device (see
Section 4.1) to load a binary file into the external Flash memory associated with a
JN516x/7x device. The Flash programming instructions assume the following pre-
requisites:

 The Atomic Programming ApPC software and device drivers have been
installed on the PC - installation instructions are provided in Appendix C.1 and
Appendix C.2.

 The AP-114 device has been connected to the PC and to the target device - the
required connections to the carrier board of a JN516x/7x device are detailed in
Appendix C.3.

The Flash programming instructions are provided in the sub-sections below.

4.2.1 Setting Up the Serialisation Data

If programming an encrypted binary file, before starting the ApPC software on the PC,
you must point this software at the encrypted licence file containing the serialisation
data - this is a .txt file produced by JET in Data Serialisation mode (see Section 3.2).

To do this, edit the script file Ap_Jennic_Encrypted_File.ser in the directory
C:\Program Files\Atomic Programming\ApPC\Scripts by changing line 21 from

Const FILENAME = "c:\Programmer\output.txt"

to point to the relevant file.

4.2.2 Writing to the Flash Device

1. Ensure that the AP-114 device is connected to the PC and to the carrier board
of the JN516x/7x device (for details of the latter connection, see
Appendix C.3).

2. Start the ApPC software on the PC (there should be a 'Programming Center'
icon on your desktop).

The ApPC main window will appear.

3. Select the correct Flash device (this will probably be a Numonix M25P10A or
M25P40) and select the package as ISP (this is because the target platform is
self-powered).

Note: Make sure that the Programming Center (ApPC)
software is version 1.3 or above. The latest version is
available directly from the Atomic Programming web site
(www.atomicprogramming.com).
28 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
4. Enable the serial numbers as follows (and as indicated in the screenshot
below):

a) Click Settings and then, in the Settings window, select the Serial
Numbers tab.

b) Ensure that the Enable Serial Numbers checkbox is ticked, select the
option Run serial script before programming cycle from the drop-down
menu and then select Jennic Encrypted Files from the list.

c) Click OK.

5. Click File in the main window and then click Open. Use the Browse button to
select the binary file to be loaded, leaving the other options as shown in the
screenshot below.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 29

Chapter 4
Loading an Application Image

6. Click Open to load this data into the programmer tool.

Note that the data buffer can be viewed/edited using the Buffer window, if
required.

7. Follow the path Action > Program to display the following Programming
Options window.

8. Click Program to load the binary file into the target Flash device.

Note: In this application, the protection features in the
Flash device are not required and have been set to
'Block Protect : None' and 'SRWD : Disable'.

Note: When exiting the software, the above settings will
be saved.
30 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
Appendices

A. Use Cases

This appendix details the commands for nine use cases of JET. Use cases 1 and 2
are introduced and illustrated in Section 1.3.

Note that the following abbreviations are used:

 EncKey – Encryption Key

 SData or SD – Serialisation Data

 App1 – Application image 1

 App2 – Application image 2

A.1 Use Case 1: Single App with SD - Unencrypted

Combine SD with App1 to produce output<MAC addr>.bin:

JET.exe -m combine -v JN516x -f App1.bin -x App1_config.txt

A.2 Use Case 2: Single App with Blank SD - Encrypted

Encrypt the application binary:

JET.exe -m bin -v JN516x -f App2.bin -e EncApp2.bin
-k 11223344556677880102030405060708
-i 01020304050607080102030405060708

A.3 Use Cases 3-6: Adding OTA Header to an App Binary

This section provides different use cases of adding an OTA header to a ZigBee PRO
application binary file.

Use Case 3: Adding OTA header and specifying output binary filename

JET.exe -m otamerge -v JN516x --ota --embed_hdr -u 0x4A4E -t 0x5148
-n 0x10053519 -c EncApp1.bin -o BinwithOTAHeader.bin

Use Case 4: Adding OTA header and not specifying output binary filename

JET.exe -m otamerge -v JN516x --ota --embed_hdr -u 0x4A4E -t 0x5148
-n 0x10053520 -c EncApp1.bin

Use Case 5: Adding OTA header and updating file size only (without signature data)

JET.exe -m otamerge -v JN516x --ota --embed_hdr --sign_integrity 1
-u 0x4A4E -t 0x5148 -n 0x10053521 -c EncApp1.bin
-o OTASignImageSizeUpdated.bin
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 31

Appendices
Use Case 6: Adding OTA header and signature data

JET.exe -m otamerge -v JN516x --ota --embed_hdr -u 0x4A4E -t 0x5148
-n 0x10053522 --sign_integrity 1 -x sign_config.txt -c EncApp1.bin
32 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
B. Creating a NULL OTA Image

This section details how to create a NULL upgrade image for ZigBee Over-The-Air
(OTA) certification. A NULL upgrade image is a valid OTA file that has an image body
without any real upgrade data inside. NULL images are small in size and are therefore
useful for test purposes, since small files do not take much time to download. During
testing, target devices may be required to:

 download NULL files without acting on the downloaded file

 ignore the image data in a NULL file but act on the OTA header accordingly

After the successful download of a NULL file, the target device must send an Upgrade
End Request command back to the source device. The status value of the command
may be either SUCCESS or INVALID_IMAGE.

Below are examples of unsigned and signed NULL images which contain OTA
headers but no valid image data.

Sample NULL OTA Image (unsigned):

1E F1 EE 0B 00 01 38 00 00 00 4E 4A 48 51 03 00 00 00 02 00 00 00

00 00

00 00 00 00 00 00 00 00 3E 00 00 00 00 00 00 00 00 00

Sample NULL OTA Image (signed):

1E F1 EE 0B 00 01 38 00 00 00 4E 4A 48 51 03 00 00 00 02 00 00 00

00 00

00 00 00 00 00 00 00 00 AC 00 00 00 00 00 00 00 00 00

The values in bold type in the examples above are described below (note that the
fields are in Little Endian format):

 Manufacturer code - 4A4E

 Image type - 5148

 File version - 00000003

The above examples of unsigned and signed NULL images are used in the sub-
sections below, which describe how to create a NULL image.

B.1 Creating an Unsigned NULL Image

To create an unsigned NULL image, follow the steps below:

1. Create a text file, called NullImage.bin, using the first example above.

2. Modify the manufacture code, image type and file version, as required.

3. NullImage.bin is then the required NULL image upgrade file.
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 33

Appendices
B.2 Creating a Signed NULL Image

To create a signed NULL image, follow the steps below:

1. Create a text file, called NullImage.bin, using the second example above.

2. Modify the manufacture code, image type and file version, as required. Save
the NullImage.bin file in the directory where JET is installed.

3. Run JET using the following command options (this example is for JN516x):

JET.exe -m otamerge -v JN516x --sign_integrity 1
-x configSigner.txt -c NullImage.bin -o UpgradeImage.bin

This merges the supplied NullImage.bin file with the configSigner.txt file,
which is present in the JET installation directory, and creates an output file
UpgradeImage.bin for a JN516x device in this case.

4. Signed_UpgradeImage.bin is then the required signed NULL image upgrade
file.
34 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
C. AP-114 Installation

The Atomic Programming AP-114 device is an example third-party Flash programmer
that can be used here to load encrypted applications and serialisation data into the
Flash memory of devices in a production environment.

The installation of the AP-114 programmer is in three parts:

 First the Atomic Programming PC software (ApPC) must be installed, as
described in Appendix C.1

 Then the necessary device drivers for the AP-114 must be installed, as
described in Appendix C.2

 When required, the AP-114 can be connected to the device to be programmed
as described in Appendix C.3

C.1 Installing the ApPC Software

To install the ‘Programming Center’ (ApPC) software for the AP-114 device:

1. Insert the Atomic Programming CD into the CD-ROM drive of your PC.

Your web browser should start automatically. If the 'Welcome' HTML file does
not load, double-click on welcome.htm in the directory window for your
CD-ROM drive.

2. Browse to the Software page, select the ApPC link and select the RUN option.

3. Uncheck any components that you do not want to install (although it is
recommended that all components are installed).

4. Read the License Agreement carefully and select I Agree to continue the
installation.

The Microsoft .NET framework is automatically installed, if required, in addition
to the selected components.

5. At the end of the installation, close the Setup dialogue box. There is no need
to reboot your PC, but ensure that the CD is NOT removed (as it is needed for
the next stage of installation, described in Appendix C.2).

Note: If you encounter any installation problems, before
contacting Atomic Programming or your local sales
office, please consult the manual and troubleshooting
guide on the AP-114 installation CD.

For latest software updates, check:
www.atomicprogramming.com

For support, help and advice, visit:
www.deviceprogrammers.net/forum
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 35

Appendices
C.2 Installing the Device Drivers

To install the device drivers for the AP-114 device:

1. Connect the supplied USB cable to the back of the AP-114 device.

2. Connect the other end of the USB cable to a USB port on your PC. Windows
should detect the programmer and launch the Windows Found New
Hardware Wizard.

The Hardware Wizard helps to install the USB Control Port drivers for the
programmer.

3. When asked if Windows can connect to Windows Update to search for
software, select No, not this time.

4. Now select Install from a list of specified locations.

5. Browse to the Driver folder on the CD and click Next.

After the USB Control Port drivers have been installed, the wizard will launch
again, this time to install the Device Programmer drivers.

6. Follow Steps 2-5 again to install the Device Programmer drivers, installing
from the Driver folder on the CD.

7. Once the driver installation has completed, click Finish. There is no need to
restart the PC.

Note: Currently, the software has not passed Windows
Logo testing, but it is completely safe to continue with
the installation.
36 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
C.3 AP-114 to JN516x/7x Connection

To connect the AP-114 programmer directly to your hardware platform, use the
10-way Port 2 connector on the AP-114 device, shown below.

If you are using the AP-114 device with a board from an NXP JN516x/7x evaluation or
development kit, such as the JN516x-EK004 Evaluation Kit, then a cable is required
with the mapping shown in Table 2 below.

Figure 3: AP-114 Port 2 SPI Mode Connector

Signal
AP-114 Port

10-Way Header
NXP 40-Way

Expansion Header

SCK 1 22

MISO 3 23

MOSI 9 24

SS 5 25

nRESET 2 27

Vcc (Vref) 4 39

GND 10 40

Table 2: Cable Mapping for NXP Board

2 (nRESET)

4 (Vref)

6 (-)

8 (-)

10 (GND)

1 (SCK)

3 (MISO)

5 (SS)

7 (-)

9 (MOSI)
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 37

Appendices
38 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

 JN51xx Encryption Tool (JET)
User Guide
Revision History

Version Date Comments

1.0 19-Apr-2011 First release

1.1 23-May-2012 Combine mode and use cases added, as well as other updates and
corrections

1.2 3-Sept-2012 OTA merge -p option added to specify Flash programming tool

1.3 15-Jan-2013 Updated for the JN516x chip family

1.4 18-Apr-2013 Improved appendix on creating a NULL OTA upgrade image

1.5 24-Feb-2015 Removed JN514x devices, renamed utility ‘JN51xx Encryption Tool’
and made other minor updates

1.6 14-Dec-2016 Updated for the JN517x chip family and for Smart Energy v1.2.1

1.7 24-Feb-2017 Added option to omit CRC value from OTA upgrade image and
changed the way device type is specified from number to string
JN-UG-3081 v1.7 © NXP Laboratories UK 2017 39

JN51xx Encryption Tool (JET)
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Semiconductors

For online support resources and contact details of your local NXP office or distributor, refer to:

www.nxp.com
40 © NXP Laboratories UK 2017 JN-UG-3081 v1.7

	Contents
	Preface
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks

	1. An Introduction to JET
	1.1 Purpose of JET
	1.2 Modes of Operation
	1.2.1 Binary Encryption Mode
	1.2.2 Combine Mode
	1.2.3 OTA Merge Mode

	1.3 Use Cases of JET
	1.3.1 Use Case 1: Single App with SD - Unencrypted
	1.3.2 Use Case 2: Single App with Blank SD - Encrypted

	1.4 Serialisation Data

	2. Preparing an Application for JET
	2.1 Adapting the Makefile
	2.2 Adapting the Application Code
	2.2.1 Serialisation Data

	2.3 Setting Up Serialisation Data File

	3. Creating an Application Image
	3.1 Using Binary Encryption Mode
	3.2 Using Combine Mode
	3.3 Using OTA Merge Mode
	3.4 OTA Options

	4. Loading an Application Image
	4.1 Flash Programming Tools/Devices
	4.2 Programming the Flash Device
	4.2.1 Setting Up the Serialisation Data
	4.2.2 Writing to the Flash Device

	Appendices
	A. Use Cases
	B. Creating a NULL OTA Image
	C. AP-114 Installation

