
AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x
Rev. 2 — 15 November 2023 Application note

Document information
Information Content

Keywords AN13569, LPC553x/LPC55S3x, LPCXpresso55S36, motor control applications, FRDM-MC-
PMSM driver boards, 3-phase servo motors

Abstract This application note describes a dual servo motor demo that uses an NXP board
(LPCXpresso55S36) based on the NXP LPC553x/LPC55S3x processor.

https://www.nxp.com

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

1 Introduction

This application note describes a dual servo motor demo that uses an NXP board (LPCXpresso55S36) based
on the NXP LPC553x/LPC55S3x processor. It can also be used as a reference to develop motor control
applications based on other products.

The LPC553x/LPC55S3x processor uses a single Arm Cortex-M33 core, which operates at speeds of up to
150 MHz. The LPC553x/LPC55S3x processor improves product architecture and integration, reduces power
consumption, and provides advanced security features that make it an ideal processor for numerous high-
performance applications.

This demo includes one LPCXpresso55S36 board, two FRDM-MC-PMSM driver boards, and two 3-phase
servo motors. The LPC553x/LPC55S3x processor samples the currents and voltages of the motors through its
Analog-to-Digital Converter (ADC) module. The Quadrature Decoder (ENC) module of the processor receives
the encoder signal to obtain the rotor position and speed, and generates pulse width modulation (PWM) based
on the field-oriented control (FOC) algorithm to drive the motor. At the same time, the Universal Asynchronous
Receiver/Transmitter (UART) module can be used to communicate with the FreeMASTER for command
dispatch, variable observation, and other functions that users can debug easily. Finally, precise position control
and smooth speed regulation can be achieved.

System structure and software describes the system structure and software of the dual servo motor demo.
Key peripherals configuration introduces the peripherals configuration of the dual servo motor demo. Demo
operation describes how to operate the dual servo motor demo.

2 System structure and software

This section is dedicated to the specifics of the system and software.

2.1 System structure
Figure 1 presents the system structure block diagram of this dual servo motor demo.

aaa-053076

Sensor input

3-phase
current

and
DC bus

volt/current

3-phase
current

and
DC bus

volt/current

InputMUX0

Flexcomm0

SDK 2.10

M2eFlexPWM1

M1
Pre-drivers

and
MOSFETs

Pre-drivers
and

MOSFETs

FOC
algorithm

CM33F_RTCESL_4.6.2

ADC0

HSCMP0

ENC0

eFlexPWM0

ADC1

HSCMP1

ENC1 Sensor input

LPCXpresso55S36

Application
software

FRDM-MC-LVPMSM

FRDM-MC-LVPMSM

PC
FreeMASTER

Figure 1. System structure block diagram
AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
2 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

• LPCXpresso55S36 designed by NXP contains the LPC553x/LPC55S3x chip and peripheral interfaces.
• FRDM-MC-LVPMSM designed by NXP is a motor driver board that contains driver bridges, analog sampling

circuits, and an encoder interface.
• M1 and M2 are servo motors, each with a 1000-line encoder.
• Enhanced Flex Pulse Width Modulator (eFlexPWM), ENC, and ADC are on-chip peripherals used for motor

control, encoder signal acquisition, and analog acquisition, respectively.
• Input Multiplexing (INPUTMUX) is an input multiplexing module that can provide different signal path options

for the internal peripherals of the chip. In this demo, it is responsible for providing signal connections for PWM
synchronization, ADC hardware triggering, and fault protection.

• The application software is running on LPC553x/LPC55S3x that includes the FOC algorithm,
CM33_RTCESL_4.6.2 (Real-Time Control Embedded Software Motor Control and Power Conversion
Libraries), and SDK 2.14.0.

• Flexible serial communication (Flexcomm) modules provide various peripheral function options that can be
configured into the Universal Synchronous/Asynchronous Receiver/Transmitter (USART), Serial Peripheral
Interface (SPI), Inter-Integrated Circuit (I2C), and Inter-IC Sound (I2S) functions through software. Here, the
USART function is configured to implement the communication between the FreeMASTER debugging tool
and LPC553x/LPC55S3x to demonstrate user operation.

2.2 Servo control structure
As shown in Figure 2, the control block diagram of servo control in this demo is a classical three-loop structure.

The innermost loop is the current control loop (fast loop), which contains analog signal sampling, the FOC
algorithm, and the PWM duty update.

The middle loop is the speed control loop. The comparison between the desired speed and the measured
speed obtained with the speed measurement method generates a speed error. The speed error is input to the
speed PI controller, generating a new desired value for the torque-producing component of the stator current.

The outermost loop is the position control loop. The position command is entered from the high-level application
layer. The comparison between the actual position speed command and the measured position generates a
position error. The position error is input to the position controller, generating a new reference speed.

Note: For the smooth and stable operation of the system, the position reference must go through path
planning. If the position reference signal is discontinuous, increase the ramp and trajectory filter processing
before the position controller.

In addition, a feedforward controller is added to the position control loop. It is a control system that works
according to the change of a disturbance or given value. When a disturbance is generated and the controlled
variable does not change, the feedforward controller is adjusted according to the disturbance to compensate for
the influence on the controlled variable. In this application, the differential of the position desired is used as the
feedforward input, and the output is the reference speed. After reasonable debugging, it can achieve a better
position tracking effect, reduce position error, and improve response speed.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
3 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Figure 2. Servo control block diagram

Among them, FOC is a vector control technology based on the stator magnetic field orientation. The basic idea
is to decouple the stator current into two components:

• One that controls the magnetic field
• Other that controls the torque

After decoupling, the two current components are controlled independently and do not interfere with each other.
Now, the controller structure of the motor is as simple as a separately excited DC motor controller.

To achieve FOC control, perform the following steps:

1. Detect the physical quantities of the motor (phase currents, voltage, and rotor position).
2. Transform the 3-phase stator currents to the two-phase coordinate system (α, β) using the Clarke transform.
3. Use the Park transformation to transform the (α, β) axis stator current rotation to the (d, q) coordinate

system.
4. Independently control the torque current component (isq) and the excitation current component (isd).
5. Calculate the output stator voltage space vector using the decoupling block.
6. Transform the stator voltage space vector from the (d, q) coordinate system to the (α, β) coordinate system

through the inverse Park transformation.
7. Use space vector modulation to generate a 3-phase voltage output.

To decompose the stator current into torque components and magnetic flux components, you must know
the position of the excitation magnetic flux of the motor. It requires you to accurately detect the position and
speed information of the rotor. In the current example, the rotor position and speed information are obtained by
collecting the output signal of the motor encoder through the ENC module in LPC553x/LPC55S3x. For more
details, see Section 3.6.

3 Key peripheral configuration

The current dual servo motor demo uses only the essential peripherals for the dual motor control technique
implemented in the application code.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
4 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

3.1 System Configuration (SYSCON)
The SYSCON module has multiple functions, such as system and bus control, clock selection and control,
phase-locked loop configuration, and reset wake-up control. The main function in the current design is to
generate and control the clock of each submodule and manage its working mode.

The motor control demo has the following two clock sources:

• PLL0: It is sourced from an external crystal oscillator having a clock frequency of 150 MHz. It is obtained after
frequency multiplication and division of a phase-locked loop.

• FRO_HF: It is generated by the on-chip crystal oscillator having a clock frequency of 96 MHz. It is frequency-
divided.

The Arm core works at a frequency of 150 MHz and the clock source is PLL0. For this setting, the following
registers have been configured in clock_config.c:

• MAINCLKSELB[SEL]
• AHBCLKDIV[DIV]

The clock sources for different LPC553x/LPC55S3x modules that used for motor control are as follows:

• The ENC module uses the same clock source as the Arm core, and the frequency is 150 MHz.
• Standard counter/timers (CTIMER) modules are clocked by fro_hf with a frequency of 96 MHz.
• ADC modules are clocked by fro_hf and then they work at the frequency of 48 MHz (divide by 2).
• Flexcomm modules are clocked by fro_hf_div with a frequency of 48 MHz.
• Digital-to-Analog Converter (DAC) modules are clocked by main_clk and then they work at the frequency of

12.5 MHz (divide by 12).

Figure 3 shows the clock structure diagram used for the motor control peripherals in this application.

aaa-053077

XTALIN
16 MHz PLL0

clk_in pll0_clk main_clk

AHBCLKDIV

DAC

USART

ADC

CTimer

DACnCLKDIV

MAINCLKSELB[1:0]PLL0 settings

Main clock
select

AHB_clk
150 MHz

Arm core
eFlexPWM
ENC
INPUTMUX

DACCLK
12.5 MHz

FCLK
48 MHz

ADCCLK
48 MHz

CTIMERCLK
96 MHz

Fro_hf
96 MHz

FRO_HF
divider

FROHFDIV

ADCnCLKDIV

CTIMERnCLKDIV

ADC clock
divider

CTIMER
divider

fro_hf_div Flexcomm
clock divider

FLEXCOMMn
CLKDIV

CPU clock
divider

DAC clock
divider

Figure 3. LPC553x/LPC55S3x clock source for motor control peripherals

3.2 Analog sensing (ADC)
ADC0 and ADC1 are used for the motor control analog sensing of currents and DC-bus voltage:

• The clock frequency for ADC0 and ADC1 is 48 MHz. It is taken from FRO_HF and is divided by 2.
• The ADCs operate as 16-bit converters with the single-ended conversion and hardware trigger selected.
• The ADC trigger sources are routed through the INPUTMUX module, and the trigger signal comes from the

eFlexPWM module. The TCTRL[HTEN] register must be set for this function.
• Each ADC module has two independent result FIFOs, each containing 16 entries.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
5 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Both ADCs have their own trigger chains. After trigger sampling, the phase current and the bus voltage are
collected and stored in the result queue buffer in sequence.

Because the phase current is measured when the bottom transistor is turned on. Therefore, if the duty cycle
is high (the voltage value is in the maximum area of the sine curve) as shown in Figure 4, the current can be
measured only for a short period of time.

To obtain a stable sampling resistor voltage drop, the bottom transistor must be turned on for at least a critical
pulse width. Therefore, for the current example, the dual single-ended sampling mode of the ADC is used to
sample the two-phase currents in parallel at the same time. The third-phase current is calculated based on the
formula. The channel is selected according to the sector that generates the stator voltage space vector. This
assignment is performed at the end of the ADC interrupt service routine. The ADC channel configuration is
shown in Table 1.

Figure 4. PWM duty and electric degree

Sector number ADC channel A ADC channel B

Sector 1 Phase B Phase C

Sector 2 Phase A Phase C

Sector 3 Phase A Phase C

Sector 4 Phase A Phase B

Sector 5 Phase A Phase B

Sector 6 Phase B Phase C

Table 1. ADC sample channel configuration

To implement the function of flexible sampling in dual single-ended mode, you must:

• Enable the alternate channel function in the CMDLx[ALTBEN] register.
• Set the required B channel number in the CMDLx[ALTB_ADCH] register.

When reading the ADC result register, calculate the complete 3-phase current value according to the sector
where the current support vector machine (SVM) is located, using the following formula:

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
6 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Each of the two trigger queues has its own conversion completion interrupt. After the ADC0 conversion is
complete, the ADC0 interrupt gets triggered and enters ADC0_IRQHandler to execute the fast control loop of
motor 1. After ADC1 conversion is complete, ADC1 interrupt gets triggered and enters ADC1_IRQHandler to
execute the fast control loop of motor 2.

3.3 Enhanced flex pulse width modulator (eFlexPWM)
The eFlexPWM contains four PWM submodules. Each submodule is set up to control a single half-bridge
power stage. Fault channel support is provided. This PWM module can generate various switching patterns,
including highly sophisticated waveforms. It can enable the generation of 3-phase PWM signals connected to
the MOSFET H-bridge via predrivers.

Each eFlexPWM module has a 16-bit counter that counts only in the upward direction to the VAL1 value and
then resets to the INIT value. During the counting process, the counter value is compared with the value in the
VAL2/VAL3 register to control the high and low switching of the output level.

If the count range is a multiple of 2, you can set the INIT and VAL1 values to be 0-centered opposite numbers.
Similarly, you can set the VAL2 and VAL3 values to the same number, but with different signs. If the signal
edges of all submodules follow the same convention, the signals are center-aligned to one another.

The three PWM submodules of motor 1 used in the current demo are configured as follows:

• PWM0 submodule 0 configuration:
– The IPBus clock source is 150 MHz.
– The output frequency of the PWM0 submodule 0 waveform is 16 kHz with 62.5 μs period.
– The INIT register is set to -4687, and the VAL1 register is set to 4686.
– Complementary mode with 0.5 μs dead time
– During every PWM cycle, this PWM submodule sends a reload signal to other submodules for

synchronization.
– Trigger one signal from VAL0 (0) for providing synchronization with PWM1 of motor 2 via the INPUTMUX

module.
• PWM0 submodule 1 configuration:

– PWM0 submodule 0 is the clock source for this submodule.
– The output frequency of the submodule waveform is 16 kHz with 62.5 μs period.
– The INIT register is set to -4687, and the VAL1 register is set to 4686.
– Complementary mode with 0.5 μs dead time
– During every PWM cycle, a reload signal is received from submodule 0 for synchronization.
– Trigger one signal from VAL4 (-4687) for providing sample synchronization with the ADC module via the

INPUTMUX module.
• PWM0 submodule 2 configuration:

– PWM0 submodule 0 is the clock source for this submodule.
– The output frequency of the submodule waveform is 16 kHz with 62.5 μs period.
– The INIT register is set to -4687, and the VAL1 register is set to 4686.
– Complementary mode with 0.5 μs dead time
– During every PWM cycle, a reload signal is received from submodule 0 for synchronization.

The three PWM submodules of motor 2 used in the current demo are configured as follows:

• PWM1 submodule 0 configuration:
– The IPBus clock source is 150 MHz.
– The output frequency of PWM1 submodule 0 waveform is 16 kHz with 62.5 μs period.
– The INIT register is set to -4687, and the VAL1 register is set to 4686.
– Complementary mode with 0.5 μs dead time

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
7 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

– The EXT_SYNC signal from PWM0 causes initialization.
– During every PWM cycle, this PWM submodule sends a reload signal to other submodules for

synchronization.
– Trigger one signal from VAL4 (-4687) for providing sample synchronization with the ADC module via the

INPUTMUX module.
• PWM1 submodule 1 / submodule 2 configuration:

– PWM1 submodule 0 is the clock source for this submodule.
– The output frequency of the submodule waveform is 16 kHz with 62.5 μs period.
– The INIT register is set to -4687, and the VAL1 register is set to 4686.
– Complementary mode with 0.5 μs dead time
– The EXT_SYNC signal from PWM0 causes initialization.
– During every PWM cycle, a reload signal is received from submodule 0 for synchronization.

To allocate CPU loading adequately and to avoid two motors consuming energy at the same time, a lag of
180° must be achieved between the PWM waves of the two motors. As shown in Figure 5, the INIT and VAL1
registers are configured reasonably to make the PWM counter run on a regular period. The key to achieve
a 180° lag is that whenever the PWM0 counter reaches VAL0, it triggers an EXT_SYNC signal (external
synchronization) to PWM1 to initialize the counters of PWM1.

Figure 5. Synchronization between PWMs of dual motor

As mentioned earlier, a 180° phase lag exists between the PWMs of the two motors. Due to this lag, the ADC
module uses the triggers from eFlexPWM to implement time division sampling of analog signals of dual motors.

Figure 6 presents the synchronization between ADC and PWMs.

After the eFlexPWM0 counter reaches PWM0SM1VAL4, the ADC is triggered to sample the analog signal of
motor 1. After the ADC conversion, the ADC0 conversion completion interrupt gets triggered and enters the
ADC0_IRQHandler to run the motor 1 control algorithm.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
8 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

After the eFlexPWM1 counter reaches PWM1SM0VAL4, the ADC is triggered to sample the analog signal of
motor 2. After the ADC conversion, the ADC1 conversion completion interrupt gets triggered and enters the
ADC1_IRQHandler to run the motor 2 control algorithm.

Figure 6. Synchronization between ADC and PWMs

3.4 Standard counter/timers (CTIMER)
CTimer is divided into five submodules: CTIMER0, CTIMER1, CTIMER2, CTIMER3, and CTIMER4.

Each submodule has a 32-bit counter and programmable frequency divider, which can count with the CTIMER
clock or an externally provided clock in a cycle. It can generate interrupts selectively or perform other operations
on the specified timer value, according to the contents of the four matching registers.

In this dual servo example, CTimer0 and CTimer1 are used for the synchronization of the slow control loops of
the two motors. The counter value is set to 48000 and the interrupt is enabled, with the interrupt frequency as 2
kHz.

3.5 Input Multiplexing (INPUTMUX)
The Input Multiplexing (INPUTMUX) module can provide different signal path options for the internal peripherals
of the chip. The input signals of the peripherals can be multiplexed to multiple input sources. The input sources
can be external pins, interrupts, output signals of other peripherals, or other internal signals.

Figure 7 shows all the signals transmitted between different modules of the current demo through INPUTMUX:

• PWM0SM1_OUT_TRIG0 is used as the sampling trigger signal of ADC0.
• PWM1SM0_OUT_TRIG0 is used as the sampling trigger signal of ADC1.
• PWM0SM0_OUT_TRIG0 is used as the external synchronization signal of PWM1 for phase synchronization

control.
• EXTTRIG_IN3 is used as the A-phase signal of ENC0.
• EXTTRIG_IN2 is used as the B-phase signal of ENC0.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
9 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

• EXTTRIG_IN4 is used as the A-phase signal of ENC1.
• EXTTRIG_IN1 is used as the B-phase signal of ENC1.
• HSCMP0_OUT is used as the PWM0FaultTrigger.
• HSCMP1_OUT is used as the PWM1FaultTrigger.

aaa-053078

INPUTMUX0
PWM1 PWM0

EXT_SYNC0
EXT_SYNC1
EXT_SYNC2
EXT_SYNC3

ADC0

TRIG0

ADC1PWM1

EXTTRIG

TRIG0

ENC0

PHASEA
PHASEB

SM0_OUT_TRIG0

SM0_OUT_TRIG0

SM1_OUT_TRIG0

HSCMP

HSCMP0_OUT
HSCMP1_OUT

EXTTRIG_IN3
EXTTRIG_IN2
EXTTRIG_IN4
EXTTRIG_IN1 ENC1

PHASEA
PHASEB

PWM

PWM0FaultTrigger
PWM1FaultTrigger

Figure 7. Input multiplexing connections

3.6 Quadrature decoder (ENC)
ENC is divided into two submodules: ENC0 and ENC1. Each submodule has a 32-bit counter/timer group,
suitable for decoding the encoder signals. A counter/timer group includes:

• Prescaler
• Filter
• Position counter
• Revolution counter
• Position deviation counter
• Holding register
• Watchdog clock
• Pulse accumulator

In the current demo, the ENC module is used for obtaining motor rotor position information and for performing
speed measurement.

Figure 8 shows how to use the ENC module to implement the counting of motor encoder signals.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
10 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

aaa-053079

Watchdog
timer

Position
difference

counter

Modulo value

POSMATCH

Compare value

Quadrature decoder

Position
counter

Trigger

PHASEB
INDEX
HOME

Count_Up
Count_Down

Edge detect
state machinePHASEA

Glitch
filter

Delay

Revolution
counter

Figure 8. ENC structure diagram

The 32-bit position counter calculates up or down on every count pulse generated by the difference of PHASEA
and PHASEB. The position counter acts as an integration information, and its value is proportional to position.
The direction of the count is determined through the Count_Up and Count_Down signals.

Figure 9 shows the basic operation of a quadrature incremental position quad decoder:

• If PHASEA leads PHASEB, then the motion is in the positive direction.
• If PHASEA trails PHASEB, then the motion is in the negative direction.

Figure 9. Quad decoder signals

To implement the motor speed measurement function, the ENC module has the following key registers:

• POSD: Reading this register can load the value of each register into the corresponding hold register to
implement data synchronization.

• POSDH: This register indicates the position value change that occurs between two reads of the position
register.

• POSDPERH: This register uses the peripheral clock prescaled by CTRL3[PRSC] as the reference. It stores
the change of the counter value between the two encoder pulses, reflecting the time difference between the
two encoder pulses.

• LASTEDGEH: This register indicates the time since the last encoder pulse.

Ttimer is the clock cycle of the ENC module.

Line is the line number of the motor encoder.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
11 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

For motor speed measurement, the M method and the T method are suitable for high-speed and low-speed
conditions, respectively. Therefore, it is necessary to implement the flexible switching of the two speed
measurement methods under different rotational speed conditions. For high-speed scenarios, the speed can be
calculated using the M method:

For low-speed scenarios, the speed can be calculated using the T method:

With the ENC module, automatic switching between the two methods can be easily implemented to achieve
accurate speed measurement. For algorithm related details, see the "Quadrature Decoder (ENC)" chapter of
LPC553x Reference Manual.

3.7 Fault protection (HSCMP and DAC)
The fault protection function is necessary in the operation of a motor as it helps to protect the motor from any
damage during overcurrent scenarios. It notifies the motor if an overcurrent fault has occurred so that the motor
can turn off the PWM output in time.

To deal with overcurrent faults, LPC553x/LPC55S3x has three High-Speed Comparator (HSCMP) and three
DAC modules.

In the current demo, DAC0 and DAC1 are used to provide reference voltages for motor 1 and motor 2,
respectively. HSCMP0 and HSCMP1 are used for comparing motor 1 DC bus current and motor 2 DC bus
current with DAC0 output and DAC1 output, respectively. HSCMP0/HSCMP1 generates a fault signal when an
overcurrent condition arises, as explained below:

• If motor 1 / motor 2 DC bus current (plus input) - DAC0/DAC1 output (minus input) < 0, then the motor current
is within the normal range.

• If motor 1 / motor 2 DC bus current (plus input) - DAC0/DAC1 output (minus input) > 0, then the motor current
is too high, and overcurrent protection is needed.

Note: For HSCMP0, HSCMP0_IN3 is plus input and DAC0_OUT is minus input. For HSCMP1, HSCMP1_IN3 is
plus input and DAC1_OUT is minus input.

DAC uses the VDDA supply as a voltage reference. To implement fault protection:

1. Enable HSCMP high power / high speed mode.

2. Attach main_clk to DAC, and set DACnCLKDIV[DIV] to 11.

3. Calculate the clock frequency as follows:

Frequency = 150/(11+1) MHz = 12.5 MHz

3.8 FreeMASTER communication (Flexcomm0)
Flexcomm0 is used for the FreeMASTER communication between the LPC553x/LPC55S3x and the PC:

• Flexcomm0 is configured for UART.
• Both the receiver and transmitter are enabled.
• The baud rate is set to 115200 bit/s.
• Other settings are kept as default.
• In the freemaster_cfg.h file, add the serial communication module being used and the base address of

the register, such as UART0.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
12 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

4 Demo operation

This section demonstrates the operation of the dual servo motor.

4.1 Project file structure
The total number of source files (*.c) and header files (*.h) in the project is large. Therefore, only the key
project files are described in detail, and the rest are described in groups.

The main project folder is divided into the following directories:

• \boards\dual_servo: Contains the initialization configuration files for the hardware board.
• \boards\dual_servo\iar: Contains necessary compiler files.
• \boards\dual_servo\mc_drivers: Contains the driver files of each module.
• \boards\dual_servo\motor_control: Contains the motor control algorithm files and state machine

files.
• \boards\dual_servo\parameter: Contains the parameter header files and configuration file.
• \CMSIS: Provides details related to Cortex Microcontroller Software Interface Standard (CMSIS).
• \devices\LPC55S36: Contains details of LPC553x/LPC55S3x Software Development Kit (SDK).
• \FM_ControlPage: Contains FreeMASTER control page files.
• \middleware\freemaster: Contains FreeMASTER support files.
• \middlewareCM33F_RTCESL_4.6.2_IAR: Contains Real-Time Control Embedded Software Libraries

(RTCESL) for motor control and power conversion.

Files in the folders:

• M1_statemachine.c and M1_statemachine.h: These files contain the software routines executed when
the application is in a particular state or state transition.

• State_machine.c and state_machine.h: These files contain the application state machine structure
definition and they manage the switching between the application states and application state transitions.

• Motor_structure.c and motor_structure.h: These files contain structure definitions and subroutines
meant for executing motor control algorithms. The algorithms include vector control algorithm, position and
speed estimation algorithm, and speed control loop.

• Motor_def.h: Contains the main control and fault structure definition.

4.2 Motor parameters
The motor used in the current example is a brushless DC servo motor. Table 2 provides the motor
specifications.

Manufacturer name Just Motion Control Stator resistor/Ohm 0.58

Model 42JSF630AS Stator winding inductance d-axis/μH 308

Rated speed/rpm 3000 Stator winding inductance q-axis/μH 330

Rated line voltage/V 24 Pole pairs 4

Rated power/W 64 Line number 1000

Table 2. Servo motor specifications

The application parameters (position, speed, and current controller) are set for a motor with a plastic ring
(included in the board kit) mounted on the shaft; otherwise, speed oscillations may occur.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
13 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

4.3 Setting up dual servo motor demo
Figure 10 shows the dual servo motor demo setup.

LPC55S36

24 V adapter

Motor 1 wires

Motor 1 encoder interface

Motor 1

USB for power
and FreeMASTER

24 V adapter

Motor 2 wires

Motor 2 encoder interface

Motor 2

FRDM-MC-LVPMSM

Encoder 2 power supply

FRDM-MC-LVPMSM

LPCXpresso55S36

Encoder 1 power supply

Figure 10. Dual servo motor demo setup

Major hardware components used in the demo are listed below:

• LPCXpresso55S36 board
• Two FRDM-MC-LVPMSM boards
• Two 24 V servo motors
• Micro-USB cable

To set up the dual servo motor demo, perform these steps:

Note: Using the TPS54060 DC-DC converter on the FRDM-MC-LVPMSM board as a power supply
for the LPCXpresso55S36 board causes a voltage glitch. To avoid this issue, open jumper JP71 on the
LPCXpresso55S36 board and use the board power supply, SYS_5V0, for powering the motor encoder. Before
starting the process, ensure that the adapters are powered off.
AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
14 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

1. As shown in Figure 10, plug the LPCXpresso55S36 and FRDM-MC-LVPMSM boards together via Arduino
interface, and connect motor wires and encoder interface.

2. Supply power to the FRDM-MC-LVPMSM board through a 24 V adapter.
3. Connect LPCXpresso55S36 and PC via USB interface.
4. Open FM_DualServo.pmp available in the software package (FreeMASTER version must be no lower

than 3.1.2).
5. Click the GO button to enable communication between PC and LPC553x/LPC55S3x, as shown in Figure 11.
6. Click the DualServo page.
7. Click the Start button to enable the demo.
8. Operate the demo by clicking other buttons on the control page.

Figure 11. FreeMASTER control page

4.4 Configuring parameters
If the parameters of your servo motor are configured differently than the default parameter configuration for the
servo motor used in the current demo, then you must reconfigure your motor parameters accordingly.

To do the reconfiguration, follow the steps below:

1. Open the header file M1_Params.h or M2_Params.h as needed and add the basic parameters of the
motor body at the corresponding position.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
15 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Figure 12. Motor parameter file
2. Add the required bandwidth and other parameters in the corresponding current loop, speed loop, position

loop, filter, and so on. The specific controller and filter parameters are calculated based on the formula and
are assigned to the relevant structure, when you run the program.
The control parameters of the speed loop and position loop must be provided manually and debugged in the
file, as shown in Figure 13.

Figure 13. Position and speed loop parameters
While the current loop is equivalent to a second-order control system, the corresponding PI control
coefficients can be generated automatically by setting the attenuation and bandwidth frequency, as shown in
Figure 14.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
16 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Figure 14. Current loop parameter calculation
For speed and voltage using the infinite impulse response (IIR) filter, you can manually add the cut-off
frequency of the filter for debugging as shown in Figure 15.

Figure 15. DC bus voltage filter parameter calculation
The specific controller and filter parameters are calculated based on the formula and are assigned to the
relevant structure for execution, when you run the program.

4.5 Demo experiment performance
All the measurement results mentioned in this section are taken when the motor is loaded with a light plastic
ring, and all the graphs are generated from the FreeMASTER tool.

Figure 16 shows the speed and current waveforms when the motor startup is at 2500 revolutions per minute
(RPM). The red line is speed requirement, the green line is actual speed, and the blue line is torque current. As
you can see that the motor can accelerate to 2500 RPM within 0.13 s, and the overshoot is very small.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
17 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Figure 16. Speed and current response

Figure 17 shows the position response when position requirement is 10 Hz sinusoidal, and the range of motion
is 180° mechanical angles. You can see that the rotor position (green line) can track well the change of the
given value (red line), and the maximum error (blue line) is about 2°.

Figure 17. Sinusoidal position response

In Figure 18, the waveforms on the upper side show the speed response, and the waveforms on the lower side
show the position response. The red line indicates the requirement, the green line indicates the actual value,
and the blue line shows the error between them. After setting the 180° position requirement, the motor takes
about 0.1 seconds to reach the desired position. You can notice that the error of the dynamic response is small
and the static response is stable.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
18 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Figure 18. Position and speed response

If you set a variable x that changes periodically, the positions of the two motors are set to sin(x) and cos(x),
respectively. The rotor positions of the two motors are used as the abscissa and ordinate, respectively. The
ideal trajectory of the coordinate point is a circle. The smoother the edge of the circle is, the more precise the
position control is. Click the X-Y Graph ON button on the FreeMASTER control page to start the demo. The
measurement results are shown in Figure 19.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
19 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Figure 19. Dual motor position trajectory

4.6 CPU load and memory usage
The information provided in this section is based on the demo application built using IAR Embedded Workbench
IDE v9.40.1. The demo application is in the debug RAM and flash configurations, and the optimization level is
set to high.

Table 3 shows the memory usage and CPU load. The memory usage is calculated from the linker .map file
(IAR IDE), including the 4 KB FreeMASTER recorder buffer allocated in RAM. The CPU load is measured using
the SysTick timer.

For the current demo, the fast loop frequency is 16 kHz and the slow loop (speed and position loop) frequency
is 2 kHz.

— Fast loop
(Flash)

Slow loop
(Flash)

Fast loop
(RAM)

Slow loop
(RAM)

ROM code
memory (in bytes) 22996 22996 — —

RAM code
memory (in bytes) — — 22996 22996

ROM data
memory (in bytes) 3940 3940 — —

Table 3. LPC553x/LPC55S3x dual servo motor demo CPU load and memory usage

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
20 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

— Fast loop
(Flash)

Slow loop
(Flash)

Fast loop
(RAM)

Slow loop
(RAM)

RAM data
memory (in bytes) 15510 15510 19450 19450

CPU cycles
(single motor)

2323 1056 1149 405

CPU load 52.37 % 25.59 %

Table 3. LPC553x/LPC55S3x dual servo motor demo CPU load and memory usage...continued

5 References

Table 4 lists additional documents that may be required while working on the dual servo motor demo.

Document Link

LPC553x Reference Manual (LPC553xRM) LPC553xRM.pdf

MCUXpresso SDK 3-Phase PMSM Control (LPC) (3PPMSMCLPCUG) 3PPMSMCLPCUG.pdf

Table 4. Reference documentation

6 Acronyms

Table 5 lists the acronyms used in this document.

Acronym Description

ADC Analog-to-Digital Converter

CMSIS Cortex Microcontroller Software Interface Standard

CTIMER Standard counter/timers

DAC Digital-to-Analog Converter

eFlexPWM Enhanced Flex Pulse Width Modulator

ENC Quadrature Decoder

Flexcomm Flexible serial communication

FOC Field-oriented control

HSCMP High-Speed Comparator

I2C Inter-Integrated Circuit

I2S Inter-IC Sound

INPUTMUX Input Multiplexing

PWM Pulse width modulation

SDK Software Development Kit

SPI Serial Peripheral Interface

SVM Support vector machine

SYSCON System Configuration

RPM Revolutions per minute

Table 5. Acronyms

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
21 / 25

https://www.nxp.com/doc/LPC553xRM
https://www.nxp.com/doc/3PPMSMCLPCUG

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Acronym Description

RTCESL Real-Time Control Embedded Software Libraries

UART Universal Asynchronous Receiver/Transmitter

Table 5. Acronyms...continued

7 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

8 Revision history

Table 6 summarizes the revisions to this document.

Revision number Release date Description

Changed SDK version to 2.14.0.2 15 November 2023

Changed IAR Embedded Workbench IDE version to 9.40.1.

1 26 May 2022 Replaced LPC55(S)3x with LPC553x/LPC55S3x

0 23 February 2022 Initial public release

Table 6. Revision history

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
22 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
23 / 25

mailto:PSIRT@nxp.com

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

AN13569 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 15 November 2023
24 / 25

NXP Semiconductors AN13569
Dual Servo Motor Demo on LPC553x/LPC55S3x

Contents
1 Introduction .. 2
2 System structure and software 2
2.1 System structure ..2
2.2 Servo control structure 3
3 Key peripheral configuration4
3.1 System Configuration (SYSCON)5
3.2 Analog sensing (ADC)5
3.3 Enhanced flex pulse width modulator

(eFlexPWM) ... 7
3.4 Standard counter/timers (CTIMER) 9
3.5 Input Multiplexing (INPUTMUX)9
3.6 Quadrature decoder (ENC) 10
3.7 Fault protection (HSCMP and DAC) 12
3.8 FreeMASTER communication (Flexcomm0)12
4 Demo operation ... 13
4.1 Project file structure ...13
4.2 Motor parameters .. 13
4.3 Setting up dual servo motor demo14
4.4 Configuring parameters 15
4.5 Demo experiment performance 17
4.6 CPU load and memory usage 20
5 References ..21
6 Acronyms ... 21
7 Note about the source code in the

document ..22
8 Revision history ...22

Legal information ...23

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 15 November 2023
Document identifier: AN13569

	1 Introduction
	2 System structure and software
	2.1 System structure
	2.2 Servo control structure

	3 Key peripheral configuration
	3.1 System Configuration (SYSCON)
	3.2 Analog sensing (ADC)
	3.3 Enhanced flex pulse width modulator (eFlexPWM)
	3.4 Standard counter/timers (CTIMER)
	3.5 Input Multiplexing (INPUTMUX)
	3.6 Quadrature decoder (ENC)
	3.7 Fault protection (HSCMP and DAC)
	3.8 FreeMASTER communication (Flexcomm0)

	4 Demo operation
	4.1 Project file structure
	4.2 Motor parameters
	4.3 Setting up dual servo motor demo
	4.4 Configuring parameters
	4.5 Demo experiment performance
	4.6 CPU load and memory usage

	5 References
	6 Acronyms
	7 Note about the source code in the document
	8 Revision history
	Legal information
	Contents

