# AN13541

## OM-A5000ARD hardware overview

Rev. 1.2 — 4 November 2022

**Application note** 

#### **Document information**

| Information | Content                                                                                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keywords    | OM-A5000ARD, EdgeLock A5000                                                                                                                                                               |
| Abstract    | This document describes the OM-A5000ARD development kit and details how to use its jumpers to configure the different communication options with the EdgeLock A5000 secure authenticator. |



OM-A5000ARD hardware overview

## **Revision history**

### **Revision history**

| Revision number | Date       | Description                                       |
|-----------------|------------|---------------------------------------------------|
| 1.0             | 2022-03-23 | First document release.                           |
| 1.1             | 2022-06-20 | 12NC corrected in table 1.                        |
| 1.2             | 2022-11-04 | Jumper J14 configuration corrected in chapter 4.3 |

OM-A5000ARD hardware overview

### 1 Overview

The OM-A5000ARD is the development kit for the EdgeLock A5000 Plug & Trust product. The OM-A5000ARD kit is equipped with the chip A5000 (with part number A5000R2HQ1/Z016U). This kit allows you to evaluate the EdgeLock A5000 product features and simplifies the development of your custom applications.

The EdgeLock A5000 uses I<sup>2</sup>C as communication interface with date rates up to 3.4 Mbps. I<sup>2</sup>C commands are wrapped using the Smartcard T=1 over I<sup>2</sup>C (T=1oI2C) protocol. Figure 1:

• I<sup>2</sup>C interface in target mode with date rates up to 3.4 Mbps.

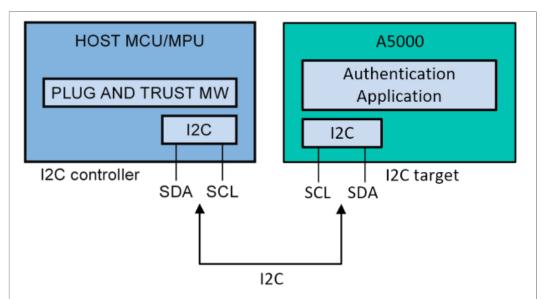


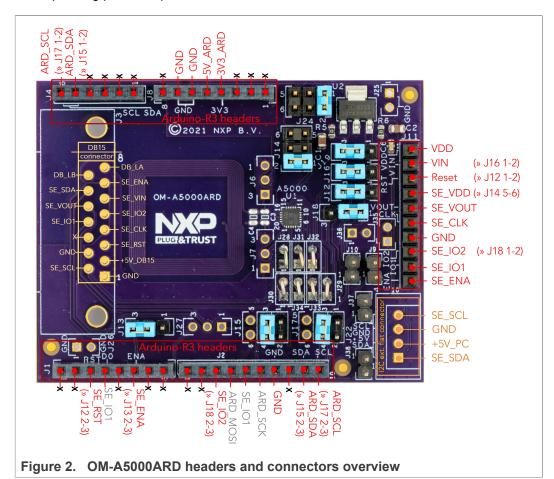

Figure 1. EdgeLock A5000 solution block diagram

**Note:** EdgeLock A5000 is designed to be used as a part of an IoT or Authentication system. It works as an auxiliary security device attached to a host controller. The host controller communicates with EdgeLock A5000 through an I<sup>2</sup>C interface (with the host being the controller and the EdgeLock A5000 being the target).

The OM-A5000ARD flexible design makes it possible to access the EdgeLock A5000 interfaces by just changing a few jumper settings. <u>Table 1</u> indicates the ordering details of the OM-A5000ARD board:

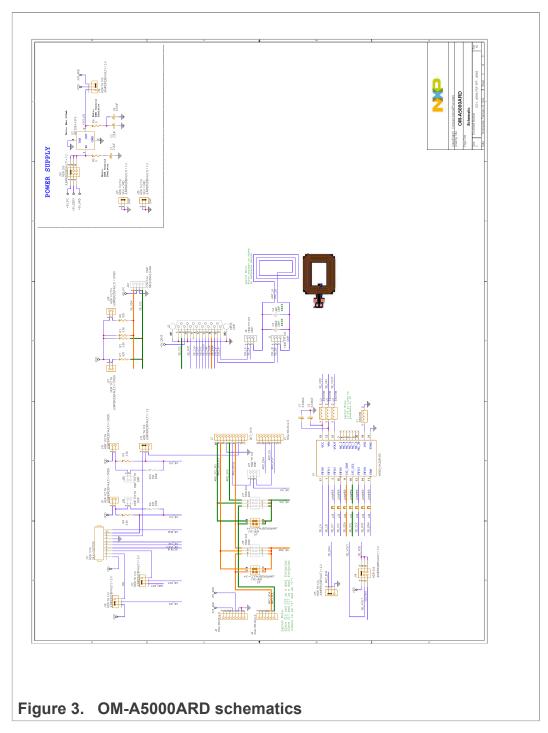
Table 1. OM-A5000ARD development kit details

| Part number | 12NC         | Content                             | Picture |
|-------------|--------------|-------------------------------------|---------|
| OM-A5000ARD | 935424319598 | EdgeLock A5000<br>development board |         |


OM-A5000ARD hardware overview

### 2 Headers and connectors

The OM-A5000ARD is designed with several headers and connectors that allow you to interface with EdgeLock A5000. The OM-A5000ARD is equipped with:


- Arduino-R3 header: It allows you to easily attach it to any NXP MCU/MPU
  development board with Arduino compatible headers such as many Kinetis, LPC and
  i.MX MCU boards. The Arduino-R3 female connectors come soldered in the OMA5000ARD.
- External I<sup>2</sup>C connector: It allows you to connect any non-Arduino compatible MCU boards via I<sup>2</sup>C target interface. The OM-A5000ARD includes the mounting holes for the External I<sup>2</sup>C connector.
- 10-pin header: It allows you to access several pins of the EdgeLock A5000. The 10-pin header male connectors come soldered in the OM-A5000ARD.
- **DB15 header:** It allows you to access several pins of the EdgeLock A5000. The OM-A5000ARD includes the mounting holes for the DB15 connector.

<u>Figure 2</u> shows an overview to OM-A5000ARD headers and connectors together with its corresponding pin description.



**OM-A5000ARD** hardware overview

## 3 OM-A5000ARD board schematics



Note: The OM-A5000ARD schematic is available in A5000ARD-SCH

OM-A5000ARD hardware overview

### 4 Jumpers overview

The OM-A5000ARD board uses individual jumpers to configure settings related with the EdgeLock A5000 interfaces, power supply and power modes. This section provides an overview to the OM-A5000ARD jumpers and its configuration options.

## 4.1 I<sup>2</sup>C configuration

The OM-A5000ARD has jumpers that allow you to control the configuration of the I<sup>2</sup>C target interface available in EdgeLock A5000. These jumpers are:

- J15, J17: Configures the I<sup>2</sup>C target connection.
- J37, J38: Configures the I<sup>2</sup>C target interface pull up resistor.

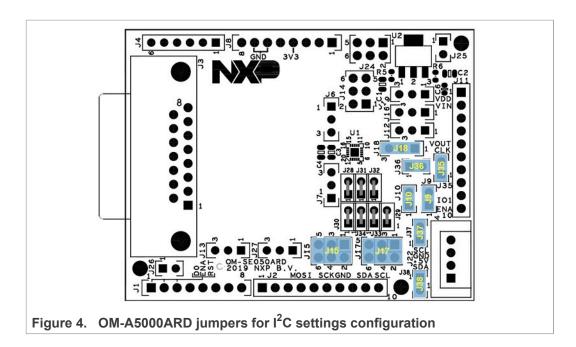

<u>Table 2</u> describes the OM-A5000ARD jumper settings for each I<sup>2</sup>C setting configuration.

Table 2. Jumpers for I<sup>2</sup>C configuration

| Jumper | Description                            | Open                              | 1-2                       | 3-4                           |
|--------|----------------------------------------|-----------------------------------|---------------------------|-------------------------------|
| J9     | r.f.u.                                 | not connected (Default)           | n.a.                      | n.a.                          |
| J10    | r.f.u.                                 | not connected (Default)           | n.a.                      | n.a.                          |
| J15    | I <sup>2</sup> C target SDA connection | not connected                     | Arduino R3 J4:5           | Arduino R3 J2:9<br>(Default)  |
| J17    | I <sup>2</sup> C target SCL connection | not connected                     | Arduino R3 J4:6           | Arduino R3 J2:10<br>(Default) |
| J18    | SE_IO2 routing                         | n.a                               | Routed to J11:9 (Default) | Routed to J2:3                |
| J37    | I <sup>2</sup> C target SCL pull up    | 3k3 Ohm<br>(Default,<br>FastMode) | 660 Ohm (HS-<br>Mode)     | n.a.                          |
| J38    | I <sup>2</sup> C target SDA pull up    | 3k3 Ohm<br>(Default,<br>FastMode) | 660 Ohm (HS-<br>Mode)     | n.a.                          |

Figure 4 highlights in blue the location of the OM-A5000ARD for I<sup>2</sup>C settings configuration.

### **OM-A5000ARD** hardware overview



### 4.2 Power supply options

The jumpers that allow you to change the OM-A5000ARD power supply settings are:

- J19: Configures V<sub>DD</sub> supply voltage options.
- J16: Connfigures SE\_V<sub>IN</sub> supply options.
- J24: Configures V<sub>DD</sub> supply voltage options in case the LDO is used.

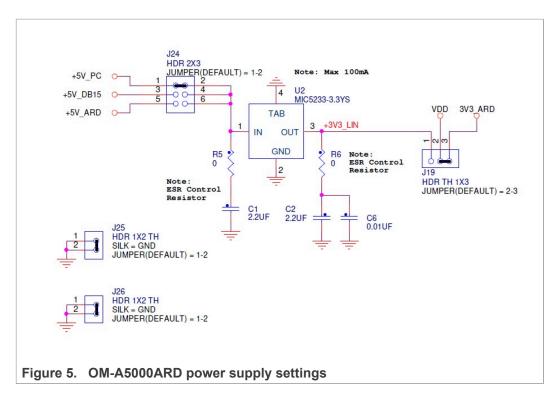

 $\underline{\text{Table 3}}$  describes the OM-A5000ARD jumper settings for each power supply settings configuration.

Table 3. Jumpers for power supply settings configuration

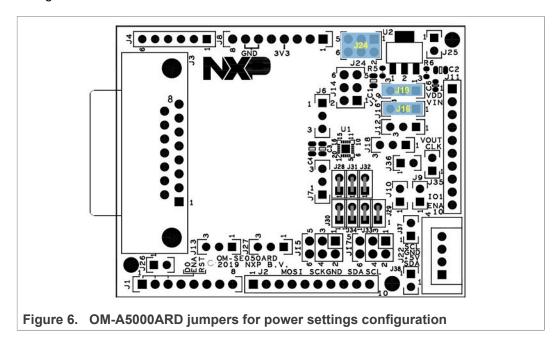

| Jumper | Description                                        | 1-2                                                                 | 2-3                                                          | 3-4                  | 5-6             |
|--------|----------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|----------------------|-----------------|
| J16    | SE_V <sub>in</sub> supply                          | Supplied by<br>J11:2 pin                                            | Supplied by<br>the V <sub>DD</sub> (see<br>J19)<br>(Default) | n.a.                 | n.a.            |
| J19    | V <sub>DD</sub> supply voltage                     | From LDO                                                            | From 3V3_<br>ARD pin<br>(Default)                            | n.a.                 | n.a.            |
| J24    | V <sub>DD</sub> supply voltage<br>(if LDO is used) | From 5V_PC<br>(External I <sup>2</sup> C<br>connector -<br>Default) | n.a.                                                         | From 5V_<br>DB15 pin | From 5V_ARD pin |

Figure 5 shows the power supply unit schematics.

### **OM-A5000ARD** hardware overview



<u>Figure 6</u> highlights in blue the location of the OM-A5000ARD for power supply settings configuration.




### 4.3 Deep power-down mode

The deep power-down mode reduces the EdgeLock A5000 power consumption to the minimum. In this mode, only  $I^2C$  pads stay supplied via  $V_{in}$ . The deep power-down mode

#### OM-A5000ARD hardware overview

is enabled by setting the ENA pin to a logic zero. In addition, it is required to supply  $V_{in}$  pin and connect  $V_{out}$  and  $V_{cc}$  pins at the PCB level.

The ENA pin controls an internal switch between  $V_{out}$  and  $V_{in}$  as shown in Figure 7. Therefore, if  $V_{out}$  is connected to  $V_{cc}$ , the ENA pin can effectively switch the power on and off to  $V_{cc}$ .



The jumpers J13 and J14 of the OM-A5000ARD allow you to control the EdgeLock A5000 deep power-down mode. To enable the deep power-down mode using the OM-A5000ARD:

- J13: Must be set to position 2-3.
- J14: Must be set to position 3-4.

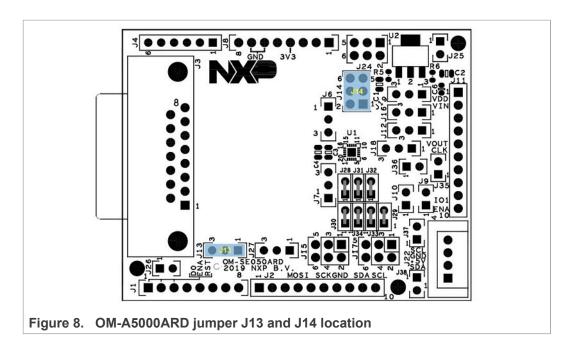

<u>Table 4</u> describes the OM-A5000ARD jumper settings for the deep power-down mode configuration

Table 4. Jumpers for deep power-down mode configuration

| Jumper | Description                    | 1-2                                                | 2-3                                          | 3-4                                  | 5-6                    |
|--------|--------------------------------|----------------------------------------------------|----------------------------------------------|--------------------------------------|------------------------|
| J13    | SE_ENA pin routing             | ENA low.<br>Switch disabled                        | ENA controlled<br>by Arduino R3<br>(Default) | n.a.                                 | n.a.                   |
| J14    | SE_V <sub>CC</sub> pin routing | Routed to V <sub>DD</sub> supply voltage (Default) | n.a.                                         | Routed to<br>SE_V <sub>out</sub> pin | Routed to<br>J11:4 pin |

Figure 8 highlights in blue the location of jumper J13 and J14.

### **OM-A5000ARD** hardware overview



### 4.4 Reset pin routing

Jumper J12 allows you to control the I<sup>2</sup>C reset pin routing of the EdgeLock A5000. <u>Table 5</u> indicates the J12 configuration.

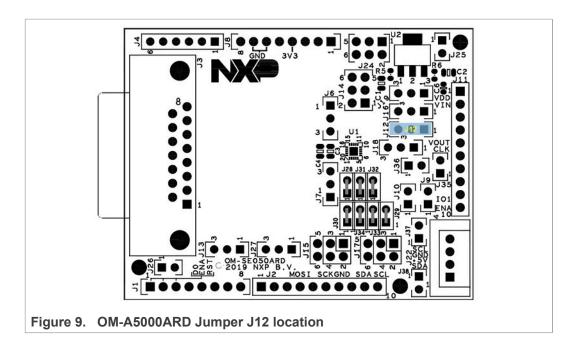

**Note:** The EdgeLock A5000 reset pin does not apply for the  $I^2$ C interface.

Table 5. Jumpers for reset pin routing configuration

| Jumper | Description | Open          | 1-2 | 2-3                                  |
|--------|-------------|---------------|-----|--------------------------------------|
| J12    | SE_RST pin  | Not connected |     | Routed to<br>Arduino R3<br>(Default) |

Figure 9 highlights in blue the location of Jumper J12.

### **OM-A5000ARD** hardware overview



### 4.5 ISO/IEC14443 contactless interface

The contactless interface is not supported at the EdgeLock A5000. Jumper J6 and J7 should be kept open.

OM-A5000ARD hardware overview

### 5 OM-A5000ARD board use cases

This section details the jumper settings to configure the differnet interfaces and to enable specific use cases with the OM-A5000ARD board.

### 5.1 EdgeLock A5000 via Arduino header

This section details the jumper configuration to enable the I<sup>2</sup>C target interface in the Arduino header. The related jumpers of the OM-A5000ARD for I<sup>2</sup>C target interface configuration are:

- J37 and J38: Configure the pull up resistors of the I<sup>2</sup>C interface.
- $\bullet\,$  J19: Configures  $V_{DD}$  supply voltage options.
- J24: Configures V<sub>DD</sub> supply voltage options in case the LDO is used.

Table 6. Jumper settings for I<sup>2</sup>C target interface configuration

| Jumper   | Configuration              | Comment                                                 |  |  |
|----------|----------------------------|---------------------------------------------------------|--|--|
| J6       | Set to 1-2<br>(Default)    | Open                                                    |  |  |
| J7       | Set to 2-3<br>(Default)    | Open                                                    |  |  |
| J9, J10  | Set to<br>"Open" (Default) | r.f.u.                                                  |  |  |
| J12      | Set to 2-3<br>(Default)    | SE_RST routed to ARD_RST on J1:3                        |  |  |
| J13      | Set to 2-3<br>(Default)    | SE_ENA set to ARD_ENA on J1:6                           |  |  |
| J14      | Set to 1-2<br>(Default)    | SE_V <sub>DD</sub> as SE_V <sub>DD</sub>                |  |  |
| J15      | Set to 3-4<br>(Default)    | I <sup>2</sup> C_SDA routed to ARD_SDA_R3 (J2:9)        |  |  |
|          | Set to 1-2                 | I <sup>2</sup> C_SDA routed to ARD_SDA (J4:5)           |  |  |
| J16      | Set to 2-3                 | V <sub>DD</sub> as SE_V <sub>IN</sub>                   |  |  |
| J17      | Set to 3-4<br>(Default)    | I <sup>2</sup> C_SCL routed to ARD_SCL_R3 (J2:10)       |  |  |
|          | Set to 1-2                 | I <sup>2</sup> C_SCL routed to ARD_SCL (J4:6)           |  |  |
| J18      | Set to 1-2                 | SE_IO2 to pin 9 of header J11                           |  |  |
| J19      | Set to 2-3<br>(Default)    | V <sub>DD</sub> supply voltage from Arduino-R3 voltages |  |  |
|          | Set to 1-2                 | V <sub>DD</sub> supply voltage from LDO.                |  |  |
| J24      | Set to 1-2<br>(Default)    | No input LDO                                            |  |  |
|          | Set to 5-6                 | 5V_ARD to LDO                                           |  |  |
| J25, J26 | Do not care                | Dummy jumpers                                           |  |  |
| J37, J38 | Set to<br>"Open" (Default) | 3k3 pull-up resistor for I <sup>2</sup> C standard mode |  |  |

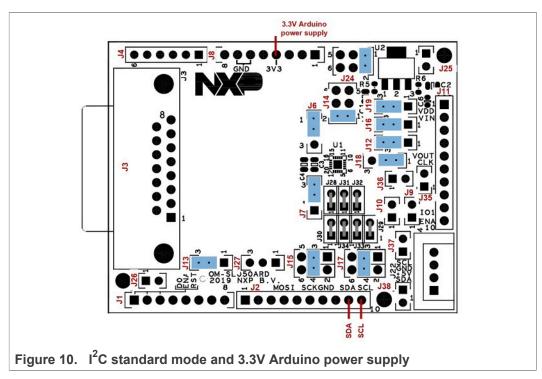
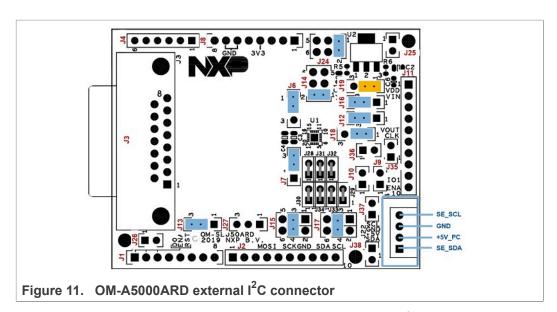

#### OM-A5000ARD hardware overview

Table 6. Jumper settings for I<sup>2</sup>C target interface configuration...continued

| Jumper | Configuration   | Comment                                                                |
|--------|-----------------|------------------------------------------------------------------------|
|        | Set to "Closed" | 560 Ohm parallel pull-up resistor for I <sup>2</sup> C high speed mode |

Figure 10 shows the jumper settings to configure the I<sup>2</sup>C target in standard mode and 3.3V ARD supply voltage (no LDO).

In this example, the jumper configuration used in <u>Figure 10</u> correspond to the values highlighted in bold in <u>Table 6</u> (J15, J17, J19, J24, J37 and J38).




You may modify the I<sup>2</sup>C mode or power supply settings just changing the jumper settings accordingly as indicated in Table 6.

## 5.2 EdgeLock A5000 via external I<sup>2</sup>C connector

<u>Figure 11</u> shows the jumper settings to configure EdgeLock A5000 communication via external I<sup>2</sup>C connector:

### **OM-A5000ARD** hardware overview



<u>Table 7</u> details the jumper settings for this configuration (External I<sup>2</sup>C connector).

Table 7. OM-A5000ARD external I<sup>2</sup>C connector

| Jumper   | Configuration            | Comment                                                 |
|----------|--------------------------|---------------------------------------------------------|
| J6       | Set to 1-2<br>(Default)  | Open                                                    |
| J7       | Set to 2-3<br>(Default)  | Open                                                    |
| J9, J10  | Set to open<br>(Default) | r.f.u.                                                  |
| J12      | Set to 2-3<br>(Default)  | SE_RST routed to ARD_RST on J1:3                        |
| J13      | Set to 2-3<br>(Default)  | SE_ENA set to ARD_ENA on J1:6                           |
| J14      | Set to 1-2<br>(Default)  | SE_VDD as SE_VDD                                        |
| J15      | Set to 3-4<br>(Default)  | I2C_SDA routed to ARD_SDA_R3 (J2:9)                     |
| J16      | Set to 2-3<br>(Default)  | VDD as SE_VIN                                           |
| J17      | Set to 3-4<br>(Default)  | I2C_SCL routed to ARD_SCL_R3 (J2:10)                    |
| J18      | Set to 1-2<br>(Default)  | SE_IO2 to pin 9 of header J11                           |
| J19      | Set to 1-2               | 3.3V from LDO as V <sub>DD</sub> supply voltage         |
| J24      | Set to 1-2<br>(Default)  | 5V_PC from external MCU board to LDO                    |
| J25, J26 | Do not care              | Dummy jumpers                                           |
| J37, J38 | Set to "Open" (Default)  | 3k3 pull-up resistor for I <sup>2</sup> C standard mode |

**OM-A5000ARD** hardware overview

## 6 OM-A5000ARD technical operation description

Please refer to application note 'AN13256 - Get started with EdgeLock A5000 support package' how to get started with the OM-A5000ARD board and for getting familiar with EdgeLock A5000 support package. The document is available at this location: <a href="https://www.nxp.com/A5000">www.nxp.com/A5000</a>.

#### OM-A5000ARD hardware overview

### 7 Legal information

#### 7.1 Definitions

**Draft** — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

#### 7.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based

on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

### 7.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### OM-A5000ARD hardware overview

### **Tables**

| Tab. 1. | OM-A5000ARD development kit details3 | Tab. 5. | Jumpers for reset pin routing configuration | . 10 |
|---------|--------------------------------------|---------|---------------------------------------------|------|
| Tab. 2. | Jumpers for I2C configuration6       | Tab. 6. | Jumper settings for I2C target interface    |      |
| Tab. 3. | Jumpers for power supply settings    |         | configuration                               | . 12 |
|         | configuration7                       | Tab. 7. | OM-A5000ARD external I2C connector          |      |
| Tab. 4. | Jumpers for deep power-down mode     |         |                                             |      |
|         | configuration9                       |         |                                             |      |

### OM-A5000ARD hardware overview

## **Figures**

| Fig. 1.<br>Fig. 2. | EdgeLock A5000 solution block diagram 3 OM-A5000ARD headers and connectors overview | Fig. 7.<br>Fig. 8.  | Deep power-down mode diagramOM-A5000ARD jumper J13 and J14 location |    |
|--------------------|-------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------|----|
| Fig. 3.<br>Fig. 4. | OM-A5000ARD schematics                                                              | Fig. 9.<br>Fig. 10. | OM-A5000ARD Jumper J12 location                                     | 11 |
| Fig. 5.<br>Fig. 6. | OM-A5000ARD power supply settings                                                   | Fig. 11.            | OM-A5000ARD external I2C connector                                  |    |

### OM-A5000ARD hardware overview

### **Contents**

| 1   | Overview                           | 3  |
|-----|------------------------------------|----|
| 2   | Headers and connectors             |    |
| 3   | OM-A5000ARD board schematics       | 5  |
| 4   | Jumpers overview                   |    |
| 4.1 | I2C configuration                  | 6  |
| 4.2 | Power supply options               |    |
| 4.3 | Deep power-down mode               | 8  |
| 4.4 | Reset pin routing                  |    |
| 4.5 | ISO/IEC14443 contactless interface | 11 |
| 5   | OM-A5000ARD board use cases        | 12 |
| 5.1 | EdgeLock A5000 via Arduino header  | 12 |
| 5.2 | EdgeLock A5000 via external I2C    |    |
|     | connector                          | 13 |
| 6   | OM-A5000ARD technical operation    |    |
|     | description                        | 15 |
| 7   | Legal information                  |    |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.