
1 Introduction
TensorFlow Lite is an open source software library for running machine
learning models on mobile and embedded devices. For more information, see
https://www.tensorflow.org/lite/.

The MCUXpresso Software Development Kit (MCUXpresso SDK) includes a
comprehensive software package with a pre-integrated eIQ TensorFlow Lite
library based on TensorFlow Lite 1.14 version. This document describes the
steps to train the TensorFlow model on Gender voice audio samples and
classification. The trained TensorFlow model is converted to a source file that can run on i.MXRT board.

1.1 Application details
Gender voice recognition consists of two important parts:

1. Convert audio samples from time-domain waveform to the frequency domain and extract features using MFCC(Mel
Frequency Cepstral Coefficients).

2. Run the model based on neural network classifier as DS-CNN to process the extracted features and perform prediction.

1.2 Features extraction using MFCC
An overview of the gender voice recognition process is first to use Mel Frequency Cepstral Coefficients(MFCCs) as the feature
extractor to get the 2D fingerprint of the audio. Since the input to the neural network is an image like a 2D audio fingerprint with
the horizontal axis denoting the time and the vertical axis denoting the frequency coefficients.

Figure 1. Gender voice recognition pipeline

The following parameters need to define for feature extraction using MFCC:

• Input audio sampling rate: 16000 Hz

• Input audio clip length: 1000 ms (L)

• Spectrogram window size: 40 ms (l)

• Spectrogram window stride: 20 ms (s)

Contents

1 Introduction......................................1
2 Model development on TensorFlow

.. 2
3 TensorFlow model conversion........ 9
4 Running inference on edge (i.MXRT)

.. 11
5 Conclusion.....................................15
6 Revision History............................ 15

AN13065
Gender Voice Recognition with TensorFlow Lite Inference
Rev. 0 — 12/2020 Application Note

https://www.tensorflow.org/lite/

• MFCC coefficient count:10 (F)

Using the above parameters of Input audio clip length(L), Spectrogram window size(I), and Spectrogram window stride(s), the total
number of frames for the 2D fingerprint model are:T = L − Is + 1 = 1000− 4020 + 1 = 49
For 1 frame, MFCC coefficient = 10; then it becomes 490 in size, fingerprint for 49 frames.

On the sliced frame, a window function (Hanning window) is applied to each frame; afterward, Fourier transform on each frame (or
more specifically a First Fourier Transform) is applied and the power spectrum is calculated; and subsequently compute the filter
banks. To obtain MFCCs, a Discrete Cosine Transform (DCT) is applied to the filter banks retaining 10 numbers of the resulting
coefficients while the rest are discarded.

After pre-processing of the audio signal through MFCC; it is fed to inference for gender voice classification.

1.3 Prerequisites
• MCUXpresso 11.2.0 or later

• i.MX RT1060 or i.MX RT1050 board

• Serial Console(Teraterm)

• Gender Voice Recognition Release Package. It contains Python scripts that this document needs to train the model,
available in the Application Note Software section.

• MCUXpresso SDK 2.8.0 or later for i.MX RT1060, available at MCUXpresso SDK Builder.

2 Model development on TensorFlow
TensorFlow is an open-source neural network library written in Python. The developed TensorFlow model can be easily converted
into TensorFlow Lite for running the model on edge.

Based upon a sample voice, it will help identify a person’s gender as male or female. Often, the human ear can easily detect
the difference between a male or female voice within the first few spoken words; this functionality is achieved through a
developed model.

This application note describes TensorFlow model training on DS-CNN neural network with audio samples. The TensorFlow
model (available with this Application Note) was trained using 8500 pre-recorded samples of male and female voices, speech,
and utterances. The audio sample consists of a downloaded sample from http://festvox.org/cmu_arctic/cmu_arctic/packed/ and
recorded samples from 21 different speakers. The samples are processed using Mel-frequency Cepstral Coefficients (MFCC)
technique and then applied to an artificial intelligence/machine learning algorithm to learn gender-specific traits and then export
the trained model on i.MXRT1060 board and use to run inference to classify gender voice.

2.1 Depthwise Separable Convolutional Neural Network (DS-CNN) model
Depthwise Separable Convolution is an efficient alternative to the standard 3-D convolution operation and has been used to
achieve compact network architectures in the area of computer vision. DS-CNN first convolves each channel in the input feature
map with a separate 2-D filter and then uses pointwise convolutions (that is, 1x1) to combine the outputs in the depth dimension.
By decomposing the standard 3-D convolutions into 2-D convolutions followed by 1-D convolutions, Depthwise Separable
Convolutions are more efficient both in the number of parameters and operations, which makes deeper and wider architecture
possible even in the resource-constrained microcontroller devices. In this work, we adopt a Depthwise Separable CNN based
on the implementation of MobileNet. An average pooling followed by a fully-connected layer is used at the end to provide global
interaction and reduce the total number of parameters in the final layer.

NXP Semiconductors
Model development on TensorFlow

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 2 / 16

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060?&tab=Documentation_Tab&linkline=Application-Note
https://mcuxpresso.nxp.com
http://festvox.org/cmu_arctic/cmu_arctic/packed/

Figure 2. Depthwise Separable CNN architecture

A snippet of DS-CNN code is provided below:

Note that the first layer is always regular convolution of the model, but the remaining layers are all Depthwise
Separable Convolutions.

Figure 3. DS-CNN code snippet

Implementation of the Depthwise Separable Convolution layer looks like below.

NXP Semiconductors
Model development on TensorFlow

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 3 / 16

Figure 4. Depthwise Separable Convolution layer

An average pooling followed by a fully-connected layer is used at the end to provide global interaction and reduce the total number
of parameters in the final layer.

2.2 Steps for training the DS-CNN model on Gender Voice Dataset
Before we head towards model training, we have to set up a system for the TensorFlow framework for model training.

Windows system should be pre-installed with MCUXpresso IDE v11.2.0 or later, SDK2.8.0, or later with the eIQ component for
i.MXRT1060-EVK and a serial terminal emulator (that is, TeraTerm).

The steps for installation of TensorFlow on Windows are listed below:

1. Download and install the Anaconda (appropriate to your system supporting 32-bit or 64-bit) from the link below.
The Anaconda has in-built several utility packages that help to run python scripts for the TensorFlow model. After
downloading the Anaconda, install it with the default selection options in your system.

https://www.anaconda.com/products/individual#windows

a. Make sure that the Anaconda location path is included in the environment system variable.

b. Some of the necessary packages need to be installed separately, which can be done by following step 2.

 NOTE

2. Before installing the required packages for developing the TensorFlow model, make sure that the Python version is
3.7.3. Follow the next commands from the Anaconda command prompt to see the python version and downgrade it if
required:

python -V
conda install python=3.7.3

NXP Semiconductors
Model development on TensorFlow

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 4 / 16

https://www.anaconda.com/products/individual

Below are the packages required for developing the TensorFlow model. The below commands are executed from the
Anaconda command prompt.

python -m conda install tensorflow=1.14.0
python -m conda install tensorflow-datasets
python -m conda install numpy=1.16.4
conda install -c anaconda scikit-learn=0.21.2

Install the NumPy package only if not already installed from the above mentioned packages.

 NOTE

3. Install Vim v8.1 or latest, for the conversion of .tflite file into .h file. There is a binary converter program named xxd.exe
located inside the Vim package that is required during the conversion of the TensorFlow-Lite (TF-Lite) file into a source
file. For windows, install Vim from the below link.

https://www.vim.org/download.php#pc

Vim package named “gvim82.exe (ftp)” needs to be installed. Add vim location path in the environment
system variable.

 NOTE

The steps for model training and gender voice classification are listed below:

1. Data preparation: A total of 4000 audio wave files are available.

Male audio sample files are available at the below link.

http://festvox.org/cmu_arctic/cmu_arctic/packed/cmu_us_rms_arctic-0.95-release.zip

http://festvox.org/cmu_arctic/cmu_arctic/packed/cmu_us_ksp_arctic-0.95-release.zip

Female audio sample files are available at the below link.

http://festvox.org/cmu_arctic/cmu_arctic/packed/cmu_us_slt_arctic-0.95-release.zip

http://festvox.org/cmu_arctic/cmu_arctic/packed/cmu_us_clb_arctic-0.95-release.zip

After unzip, you will get the audio samples in the wav folder.

 NOTE

2. Create a male and a female folder. Copy male and female wave files that have been downloaded from step 1 above
and paste them in the male and female folder respectively.

3. Create a tmp folder as the parent folder in the drive; which will be used for providing a dataset for training the model.
For example, E:\tmp. Under the tmp folder, create a speech_dataset folder; copy male and female folders (created in
Step 2 which consists of audio samples) into speech_dataset folder.

The folder structure must look like below.

Figure 5. Dataset folder structure

4. Download the model training and gender voice classification script from the below link:

https://github.com/ARM-software/ML-KWS-for-MCU.git

NXP Semiconductors
Model development on TensorFlow

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 5 / 16

https://www.vim.org/download.php
http://festvox.org/cmu_arctic/cmu_arctic/packed/cmu_us_rms_arctic-0.95-release.zip
http://festvox.org/cmu_arctic/cmu_arctic/packed/cmu_us_ksp_arctic-0.95-release.zip
http://festvox.org/cmu_arctic/cmu_arctic/packed/cmu_us_slt_arctic-0.95-release.zip
http://festvox.org/cmu_arctic/cmu_arctic/packed/cmu_us_clb_arctic-0.95-release.zip
https://github.com/ARM-software/ML-KWS-for-MCU.git

After downloading, you will require the below mentioned script from the downloaded folder ML_KWS-for-MCU.

• train.py - Used for training the model.

• freeze.py - Used for freezing the trained model checkpoint into a protocol buffer (.pb) file.

• label_wav.py - Used for gender voice classification.

5. To train the model, the command below needs to be executed on the window command prompt. Navigate to the
ML_KWS-for-MCU folder and execute the command.

python train.py --model_architecture ds_cnn --model_size_info
6 276 10 4 2 1 276 3 3 2 2 276 3 3 1 1 276 3 3 1 1
276 3 3 1 1 276 3 3 1 1 --dct_coefficient_count 10 --
window_size_ms 40 --window_stride_ms 20 --learning_rate 0.0005,0.0001,0.00002 --
how_many_training_steps 2000,2000,2000 --wanted_words
male,female --summaries_dir .\path\to\the\Model\Logs --
train_dir .\path\to\the\Model\savedModel

Before we start training the model, we need to understand the arguments of the model training command through which
we will train the model.

Argument explanation is mentioned below:

• --model_architecture <ds_cnn>: model architecture can be provided like cnn, dnn, and so on. It is recommended to use
ds_cnn as it uses less memory and processing power.

• --model_size_info <6 276 10 4 2 1 276 3 3 2 2 276 3 3 1 1 276 3 3 1 1 276 3 3 1 1 276 3 3 1 1 >

• 1st argument: <6> define the number of layers.

• Argument: <276 10 4 2 1>: 276 defines the number of features for neural network. Argument <10, 4> defines the size
of filter and argument <2, 1> defines the filter stride along x and y axis.

• --dct_coefficient_count <10>: consider only 10 filters.

• --window_size_ms <40>: window size of 40 milliseconds is considered for feature extraction using MFCC.

• --window_stride_ms <20>: the window will stride for 20 milliseconds, so it will have an overlap of 20 milliseconds.

• --learning_rate <0.0005, 0.0001, 0.00002> and --how_many_training_steps <2000, 2000, 2000>: total number of
training steps will be 6000; such training steps will train the model for 6000 times. For example, the 1st step trains the
model for the first time with a 0.0005 learning rate, the 2nd step trains the model for the second time with a 0.0001
learning rate, and so on.

• --wanted_words <male,female>: name of the audio folder which has audio samples. Based on this folder name,
labels are generated in ds_cnn_labels.txt with two additional labels silence and unknown. Labels generated in
ds_cnn_labels.txt act as a classification name.

• --summaries_dir <path/to/the/Model/Logs>: training model logs will be saved in this folder.

• --train_dir <path/to/the/Model/savedModel>: trained model will be saved in this folder.

Figure 6. Model training command

After the execution of the above command, the below logs will be displayed on the screen once training is completed. Model
training takes approximately 10 hours depending upon system configuration.

NXP Semiconductors
Model development on TensorFlow

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 6 / 16

Figure 7. Model training completion logs

After the model is trained; the model checkpoint will be saved in the ‘to/the/folder/Model/savedModel/best’ folder.

Figure 8. Model saved in the folder

6. The protocol buffer (.pb) file will be required further for testing the model to classify the gender as well as to convert it
into a TF-Lite file. Therefore, the trained model (checkpoint file) needs to freeze to generate a protocol buffer (.pb) file.
The checkpoint file is available at ‘/to/the/folder/savedModel/best’ path, choose the file which has the maximum numeric
number as checkpoint file (For example, ds_cnn_9663.ckpt-3400) among these many files as shown in the below figure.

NXP Semiconductors
Model development on TensorFlow

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 7 / 16

Figure 9. Trained model (checkpoint) file

Execute the below command for generating a .pb file.

python freeze.py --model_architecture ds_cnn --model_size_info 6 276 10
4 2 1 276 3 3 2 2 276 3 3 1 1 276 3 3 1 1 276 3 3 1 1 276 3 3 1 1 --
dct_coefficient_count 10 --window_size_ms 40 --window_stride_ms 20 --
wanted_words male,female --checkpoint
.\path\to\the\Model\savedModel\best\ds_cnn_9663.ckpt-3400 --output_file
.\path\to\the\Model\savedModel\ds_cnn.pb

Figure 10. Freeze command

7. Execute the label_wav.py script for gender voice classification. It is available in the downloaded folder ML_KWS-for-
MCU and audio samples for testing are available with the release package in the audio folder. File ds_cnn_labels.txt has
label information for model classification and ds_cnn.pb file has trained model-related information.

Argument <--how_many_labels 1>, value 1 will display only single class (For example, male/female/silence/unknown)
having highest percentage predicted.

python label_wav.py –wav
.\to\the\tmp\folder\audio\speech_dataset\male\artic_a0001.wav --graph
.\path\to\the\Model\savedModel\ds_cnn.pb --labels .\path\to\the
\Model\savedModel\ds_cnn_labels.txt --how_many_labels 1

NXP Semiconductors
Model development on TensorFlow

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 8 / 16

Figure 11. Gender voice classification script

After the execution of the above command, gender voice classification prediction will be displayed with a score.

Figure 12. Gender voice classification prediction result

3 TensorFlow model conversion

3.1 Converting model in TensorFlowLite format
The trained and saved model should be converted into a TF-Lite compatible format. For this, input tensor name and output tensor
name must be known, which is required during the conversion of protocol buffer file (.pb) into the TF-Lite file. Therefore, execute
the check_layer.py script which is available with this release package in the script folder to know the input and output tensor name.
Navigate to ‘/to/the/folder/release/script’ folder and execute the command below:

python check_layer.py --pbfile path/to/the/saveModel/ds_cnn.pb

Figure 13. Command for checking input/output tensor name

After the execution of the check-layer.py script, the below message will be displayed on the screen. Note down the tensors' names
marked in red color shown in Figure 14.

Input tensor name: Reshape

Output tensor name: labels_softmax

NXP Semiconductors
TensorFlow model conversion

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 9 / 16

Figure 14. Message after the execution of the check-layer.py script

Now convert the .pb file into a tflite file by providing input & output tensor name while executing the command as mentioned below:

tflite_convert --output_file=path\to\the\Model\savedModel\ds_cnn.tflite --
graph_def_file=path\to\the\Model\savedModel\ds_cnn.pb --input_arrays=Reshape
--output_arrays=labels_softmax

Figure 15. Command for converting .pb file into TF-Lite

3.2 Converting the TF-Lite model into a source file
TF-Lite model file ds_cnn.tflite is used to generate a source file. Open the window command prompt, navigate to the ‘to\folder\
Model\savedModel’ folder, and execute the below command:

xxd -i ./ds_cnn.tflite > ./ds_cnn_gender_model.h

After execution, ds_cnn_gender_model.h file will be generated. Add the const prefix in front of the unsigned char and the unsigned
int declarations as shown below in Figure 16. The ds_cnn_gender_model.h file will be required in the below step for running
the inference.

NXP Semiconductors
TensorFlow model conversion

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 10 / 16

Figure 16. For editing ds_cnn_gender_model.h file

4 Running inference on edge (i.MXRT)
Before proceeding further, it is assumed that you are familiar with the eIQ demo application tensorflow_lite_kws and SDK builder
to build the SDK_2.8.0_EVK-MIMXRT1060 with eIQ and CMSIS-DSP library component.

Download the SDK_2.8.0_EVK-MIMXRT1060.zip and SDK_2.8.0_EVK-MIMXRT1060_doc.zip folders from the SDK builder. For
more information, refer to eIQ TensorFlow Lite Library User’s Guide.pdf file available in the SDK document zip folder. After that,
import evkmimxrt1060_tensorflow_lite_kws project available under eIQ component in MCUXpresso IDE.

Perform the below steps for replacing the model in the eIQ evkmimxrt1060_tensorflow_lite_kws application and running
the inference.

1. Copy and replace ds_cnn_s_model.h header files in the application project with the header file ds_cnn_gender_model.h,
which was generated in the previous step. Your file must look like the figure shown below:

Figure 17. Replacing model file ‘ds_cnn_gender_model.h’

2. Comment and add string labels under the main function in kws.cpp file with the male and female label as shown below:

NXP Semiconductors
Running inference on edge (i.MXRT)

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 11 / 16

Figure 18. Comment and add labels

const std::string labels[] = {"Silence", "Unknown","male", "female"};

3. Comment and add the below statement under the main function in the kws.cpp file:

Figure 19. Comment and add a statement for WAVE_DATA

LOG(INFO) << "Gender voice recognition example using a TensorFlow Lite model.\r\n" << std::endl;

RunInference(&kws_mfcc, (int16_t*)WAVE_DATA, labels, model, interpreter, input_tensor);

4. Comment and add model buffer name under InferenceInit function in kws.cpp file

Figure 20. Comment and add model buffer name

model = tflite::FlatBufferModel::BuildFromBuffer((const char*)
__ds_cnn_tflite, __ds_cnn_tflite_len);

5. Comment on the below statement and declare input tensors as shown in the below figure under the RunInference
function in the kws.cpp file.

NXP Semiconductors
Running inference on edge (i.MXRT)

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 12 / 16

Figure 21. Declare input tensors

int input = interpreter->inputs()[0];
 float* input_voice = interpreter->typed_tensor<float>(input);

 for(int i = 0; i < input_bytes/4; i++){
 input_voice[i] = in[i];
 }

6. Comment and add the below statement for function GetTopN; under RunInference function in kws.cpp file as shown in
the below figure:

Figure 22. Replacing input/output tensor types

GetTopN<float>(interpreter->typed_output_tensor<float>(0),
 output_size, 1, threshold,
 &top_results, true);

7. Comment and add the gender model library in the include section:

Figure 23. Include library

#include "ds_cnn_gender_model.h"

8. Perform the below steps to execute the gender voice classification on the edge (i.MXRT board).

a. Generate an audio wave buffer array using the wave_to_array.py script. It is available in the script folder in the
release package. After the execution of wave_to_array.py, it will generate audio wave buffer array WAVE_DATA

NXP Semiconductors
Running inference on edge (i.MXRT)

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 13 / 16

in commands.h file. File commands.h will be generated in the ‘/release/audio’ folder. Execute the command
below:

python wave_to_array.py --wave male1.wav

Figure 24. Audio wave buffer file command

b. Copy and replace audio wave buffer array file commands.h in your eIQ evkmimxrt1060_tensorflow_lite_kws demo
application, which was generated in the above step a. Your file must look similar to the image shown below:

Figure 25. Audio wave buffer file

c. Save the changes in the project file, build the project, and flash the binary in i.MXRT1060 board using debug
mode.

The message will be displayed in the TeraTerm serial terminal for gender voice prediction. Here, the male is the
output which is also known as predicted class by the model for input artic_a0001.wav with inference execution time
838 milliseconds as shown below.

Figure 26. Gender voice classification output on TeraTerm serial terminal for static data

d. Below logs are shown in the figure for microphone data processing when no male/female is speaking. Thus, the
“silence” as the class is detected with accuracy in TeraTerm.

As real-time data; the i.MXRT board microphone will capture audio data every second. Hence, the continuous logs
will be displayed in TeraTerm.

 NOTE

NXP Semiconductors
Running inference on edge (i.MXRT)

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 14 / 16

Figure 27. Gender voice classification output for microphone data processing

e. If any male/female is speaking nearby the i.MXRT board while microphone data processing is going on; then the
microphone on the board will capture spoken audio of male/female and will display the result here with detected
accuracy as real-time data in TeraTerm

5 Conclusion
This document demonstrates the TensorFlow model trained with the gender (male & female) voice samples to classify gender
voices as male and female by such trained models in real-time and static data. It also demonstrates the conversion of a trained
model to source files to run on i.MXRT platform using TF-Lite inference. Generated TF-Lite model runs on both i.MXRT1050 and
i.MXRT1060 boards.

6 Revision History
Table 1. Revision history

Revision number Date Substantive changes

0 12/2020 Initial release

NXP Semiconductors
Conclusion

Gender Voice Recognition with TensorFlow Lite Inference, Rev. 0, 12/2020
Application Note 15 / 16

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without
further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical experts. NXP does not convey any license
under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Security — Customer understands that all NXP products may be subject to unidentified or documented
vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s
responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in
customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security
updates from NXP and follow up appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make the ultimate design decisions
regarding its products and is solely responsible for compliance with all legal, regulatory, and security related
requirements concerning its products, regardless of any information or support that may be provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages
the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package,
QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI,
Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks
of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12/2020
Document identifier: AN13065

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Application details
	1.2 Features extraction using MFCC
	1.3 Prerequisites

	2 Model development on TensorFlow
	2.1 Depthwise Separable Convolutional Neural Network (DS-CNN) model
	2.2 Steps for training the DS-CNN model on Gender Voice Dataset

	3 TensorFlow model conversion
	3.1 Converting model in TensorFlowLite format
	3.2 Converting the TF-Lite model into a source file

	4 Running inference on edge (i.MXRT)
	5 Conclusion
	6 Revision History

