Application note

Document information

Information	Content
Keywords	JN5189, QN9090, K32W, DCDC
Abstract	This document outlines critical parameters for DC-DC external component selection and implication of incorrect component selection.

Using the DC-DC Feature

1 Introduction

This application note provides a hardware design guide for the DC-DC converter on the JN5189, QN9090, and K32W devices. It explains how to choose external components for the DC-DC converter properly. The document focuses on the critical parameters of external components and their implication of incorrect selection, including a PCB design example of the external component.

2 Theory and uses of DC-DC converters

DC-to-DC converters are used in portable electronic devices such as cellular phones and laptop computers, which are supplied with power from batteries primarily. Such electronic devices often contain several subcircuits, each with its own voltage level requirement different from the one supplied by the battery or an external supply, sometimes higher or lower than the supply voltage. Additionally, the battery voltage declines as its stored energy is drained. Switched DC-to-DC converters offer a method to increase the voltage from a partially lowered battery voltage instead of using multiple batteries to accomplish the same thing. This method saves space.

Most DC-to-DC converter circuits also regulate the output voltage. Some exceptions include high-efficiency LED power sources, a kind of DC-to-DC converter that regulates the current through the LEDs and simple charge pumps that double or triple the output voltage.

Switching converters, such as buck converters in JN5189, QN9090, and K32W, provide much greater power efficiency as DC-to-DC converters than linear regulators. These linear regulators are simpler circuits that lower voltages by dissipating power as heat but do not step up output current.

Warning:

The DC-DC function is bypassed by removing the inductor and mounting a series resistor to VBAT on the JN5189, QN9090, or K32W OM15069 module, as shown in Figure 1.

However, this mode is not allowed and NXP does not support this mode.

Using the DC-DC Feature

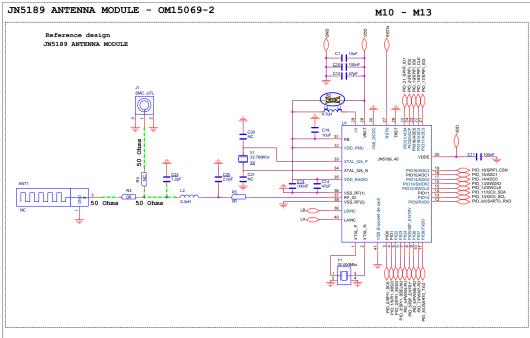


Figure 1. Location of the resistor for bypass mode (do not populate)

3 Hardware design guide

This chapter summarizes the hardware requirements for external components used for a proper functionality of the DC-DC internal converter. It contains the recommendation of appropriate component selection and the PCB drawing.

The JN5189, QN9090, and K32W family consist of internal regulators including the DC-DC converter, which are supplied by the main external supply domain with VBAT of 1.9 V-3.6~V. Figure 2 shows the connection of all the external components and the MCU required for proper DC-DC functionality.

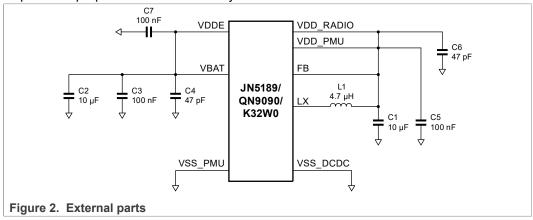


Table 1 summarizes the pin names and numbers for all packages.

Table 1. List of pin names and numbers for internal DC-DC converter

Pin Name	Pin number (HVQFN40)
VBAT	28
VDD_PMU	32

AN12893

Using the DC-DC Feature

Table 1. List of pin names and numbers for internal DC-DC converter...continued

Pin Name	Pin number (HVQFN40)
VDD_RADIO	35
VDDE	20
VSS_DCDC	30
VSS_PMU	-
LX	29
FB	31

<u>Table 2</u> summarizes the values and limitations for the external components of the DC-DC internal converter.

Table 2. External parts

Part	Minimum	Туре	Maximum	Unit
C1	10	22 (X5R or X7R)	47	μF
C2	10	22 (X5R or X7R)	47	μF
C3	80	100 (X5R or X7R)	120	nF
C4	38.7	47 (COG)	56.2	pF
C5	80	100 (X5R or X7R)	120	nF
C6	38.7	47 (COG)	56.2	pF
C7	80	100 (X5R or X7R)	120	nF
L1	3.87	4.7	10	μH

3.1 Input decoupling capacitors

The 100 nF and 47 pF ceramic capacitors are the input decoupling capacitors for the DC-DC converter. The 10 μ F or 20 μ F input ceramic capacitor is used to decouple and power the internal DC-DC converter. All the decoupling capacitors must be placed close to the pin. For the capacitors, there is no Equivalent Series Resistance (ESR) value restriction.

3.2 Output filter capacitor

This capacitor sets the voltage ripple value, which is essential for USB power supply requirements. A minimum value of the output capacitor is 10 μ F and is necessary for the correct functionality of the DC-DC converter.

If the value of the output capacitor is below 10 μ F, the voltage ripple is higher, and it does not meet the requirements of internal LDO. Values higher than the typical 22 μ F increase possible noise current.

3.3 Power inductor

The typical inductor value for most applications is from 3.7 μH – 5.6 μH . Those values are chosen based on the desired ripple current.

At the expense of higher output-voltage ripple, small-value inductors result in a higher output current slew rate, improving the load transient response of the converter. The higher the values of inductors, the lower the ripple current, reducing the core magnetic hysteresis losses.

Table 3 summarizes the values and limitations of the power inductor.

Using the DC-DC Feature

Table 3. Power inductor

Parameter	Minimum	Туре	Maximum	Unit
Inductance value	3.7	4.7	5.6	μΗ
Saturation current	350	500	-	mA

3.3.1 Saturation current limitation

The minimum value of the saturation current is 350 mA. The recommended saturation current is 500 mA or higher.

3.4 PCB guide line

To reduce the series resistance from the DC-DC inductor, keep the traces as thick and as short as possible. The ground between the inputs of capacitors C2, C3, C4, the DC-DC ground pads, and the output capacitor C1 must be on the same plane. It is not possible to use a via or a strap connection.

Figure 3 shows a proper DC-DC ground connection.

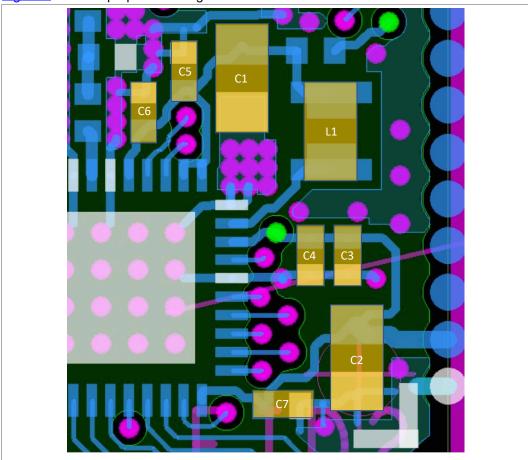


Figure 3. Ground connection

4 Conclusion

This application note summarizes all external components and PCB recommendations of the internal DC-DC converter used in JN5189, QN9090, and K32W. For proper

AN12893

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Using the DC-DC Feature

functionality, follow these recommendations in your designs with JN5189, QN9090, and K32W.

Efficiency is often the main design goal when using a DC-DC converter. Using the DC-DC converters increases the conversion efficiency from battery voltage to a low supply voltage. Even though a linear regulator can be used, it cannot achieve the same efficiency as switching regulators.

5 Revision history

Revision history

Rev.	Date	Description
0	30 June 2022	Initial release

Using the DC-DC Feature

6 Legal information

6.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

6.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Using the DC-DC Feature

Contents

1	Introduction	2
2	Theory and uses of DC-DC converters	
3	Hardware design guide	3
3.1	Input decoupling capacitors	4
3.2	Output filter capacitor	4
3.3	Power inductor	4
3.3.1	Saturation current limitation	5
3.4	PCB guide line	5
4	Conclusion	5
5	Revision history	6
6	Legal information	7

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.