

 AN11328
Implementing emWin’s Multiple Buffering feature on the
LPC1788 microcontroller
Rev. 1 — 11 February 2013 Application note

Document information
Info Content
Keywords emWin, graphics library, LPC1788, ARM Cortex-M3, multiple buffering,

double buffering, triple buffering, LPCXpresso, Embedded Artists

Abstract This application note describes the implementation of multiple buffering
using Segger’s emWin graphics library on the NXP LPC1788
Microcontroller.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 2 of 18

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20130211 Initial version.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 3 of 18

1. Introduction
This application note describes the multiple-buffering concept used in emWin. It also
describes how to use the multiple-buffering feature on the NXP’s LPC1788 ARM Cortex-
M3 microcontroller. This application note can be used as an example to implement
multiple buffering on other NXP microcontrollers containing a similar LCD controller.

1.1 Project overview
To display an image on the LCD screen, the content of the screen first needs to be
drawn in the memory. To do this, we need a large contiguous piece of memory which can
store the contents of the image pixel by pixel, called a framebuffer.

Multiple buffering is a method of using more than one buffer to eliminate screen artifacts
when changing the content of the framebuffer. Because of the size of each buffer, these
buffers usually reside in external memory. The LPC1788 microcontroller contains an
external memory controller (EMC) as well as an LCD controller. The image is rendered to
the external SDRAM and transferred to the TFT LCD using the EMC and the LCD
controller.

1.2 System components and system setup
Fig 1 depicts the main system components required by this application. This application
is developed and tested on Embedded Artists’ LPC1788 Developer’s Kit. The
development kit contains Embedded Artists’ LPC1788 OEM rev A board and rev PB1 of
the OEM baseboard. The SDRAM used in this application contains multiple framebuffers.
The LCD controller loads the frame from one of the buffers and sends it to a 7 inch TFT
LCD.

The software included in this application note can be built with Keil µVision4 IDE,
LPCXpresso5 IDE and IAR Embedded workbench IDE 4. For demonstration purposes,
the application can also be simulated on a Windows PC by compiling it with Microsoft
Visual C++ IDE, before building on another IDE and flashing it to the real target board.
This project structure has been organized similar to the regular LPC1788 BSP released
by NXP for emWin.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 4 of 18

Fig 1. Main system components

2. Theory of operation
emWin renders a frame to a buffer which resides in the SDRAM, which is then sent to the
LCD by the LCD controller. This buffer is called a framebuffer. The framebuffer is a
contiguous block of memory which stores the contents of the LCD, pixel by pixel. In other
words, this buffer contains a complete frame of data. During display of a frame, any
rendering on this framebuffer can introduce screen artifacts which appear as flickering or
tearing. Flickering artifacts occur when drawing and display is done from the same buffer
at the same time. Tearing is the effect where display shows one part of the image from
one frame and another part of the image from another frame.

To avoid these unwanted screen artifacts emWin can use more than one buffer. Multiple
buffering is the use of more than one framebuffer, so that the display always shows a
screen which is already completely rendered, even if a drawing operation is in progress.
This way rendering and displaying can be done on two separate buffers. For emWin to
use multiple buffering, this feature must be enabled.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 5 of 18

Fig 2 shows single buffer implementation used by emWin with LPC1788 microcontroller.

Fig 2. Single buffering: Same buffer used for drawing and display

With multiple buffers enabled, there is a front buffer which is used by the display
controller to generate the picture on the screen, and one or more back buffers which are
used for drawing operations. When starting the process of drawing, the current content of
the front buffer is copied into one of the back buffers. After that, all drawing operations
take place only on this back buffer.

After the drawing operation has been completed, the back buffer becomes the front
buffer. Making the back buffer the visible front buffer normally only requires the
modification of the framebuffer start address register of the display controller. Typically,
the display is refreshed by the display controller about 60 times per second. This is called
the refresh rate.

At the end of the current frame or at the beginning of an upcoming frame a
synchronization signal is generated by the LCD controller to synchronize the refresh of
the frames. This synchronization signal is called vertical synchronization signal (VSYNC),
which was originally used in CRTs. The best moment to make the back buffer the new
front buffer is this VSYNC signal. Tearing can occur if switching between buffers is
performed during a normal display period, instead of a VSYNC period. Fig 3 shows the
tearing screen artifact, which is introduced due to displaying one part of the image from
one frame and the other part of the image from a different frame.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 6 of 18

Fig 3. Tearing Effect

In general multiple buffering eliminates the following unwanted effects:
• The visible process of drawing a screen item by item
• Flickering effects caused by overlapping drawing operations
• Tearing effects caused by writing operations outside the vertical blanking period (only

when swap of buffers is synchronized with the LCD’s refresh)

The most popular buffering schemes used in emWin are double buffering and triple
buffering. These schemes are explained below.

2.1 Double buffering
Double buffering uses two buffers, one front buffer and one back buffer. When a drawing
operation starts, the current content of the front buffer is copied into the back buffer. The
drawing operation is then executed upon the back buffer. After the drawing operation
completes, the back buffer becomes the visible front buffer. For the best performance,
the back buffer should become the front buffer as soon as a drawing operation
completes, but it can introduce an image tearing artifact. As explained in the beginning of
section 2, to prevent this artifact the best moment for making the back buffer the visible
front buffer is reacting on the VSYNC signal of the display controller. Double buffering
solves the problem of flickering but can show tearing if switching between buffers is not
done during VSYNC period. Fig 4 shows double buffer implementation used by emWin
with an LPC1788 microcontroller.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 7 of 18

Fig 4. Double buffering: Separate buffers used for drawing and display

2.2 Triple buffering
Double buffering can resolve flickering effect but may not resolve tearing effect. Triple
buffering is used to eliminate both the flickering and tearing effect.

In triple buffering three buffers are available: One front buffer and two back buffers.
When a drawing operation starts, the current content of the front buffer is copied into the
first back buffer. The drawing operation is then executed upon this back first buffer. After
the drawing operation completes, the back buffer becomes the visible front buffer and the
content of this buffer are copied to another buffer.

Contrary to the double buffer solution, it is not required to switch to the buffer
immediately as there is one more buffer. Switching to the new front buffer could be done
on the next VSYNC signal of the display controller which can be achieved by an interrupt
service routine (ISR). Most of the display controllers which are able to deal with more
than one framebuffer provide the VSYNC signal as an interrupt source. Within the ISR
the pending front buffer should become visible. Until the pending front buffer becomes
visible, it is not used for further drawing operations.

If a further drawing operation is initiated before the first back buffer has become visible,
the second back buffer is used for the drawing operation. This way another drawing
operation can be started without being stalled by waiting for the next VSYNC signal,
thereby achieving a higher possible frame rate.

Fig 5 shows a triple buffer implementation used by emWin with LPC 1788
microcontroller.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 8 of 18

Fig 5. Triple buffering: Two separate buffer for drawing and one separate buffer for the display

2.3 Requirements
Following are the requirements to use multiple buffers:

• Enough video RAM for multiple framebuffers should be available.
• The display controller should support changing the framebuffer start address.
• Changing the display framebuffer address of the display controller needs to take

place immediately, and it should be possible to do this on the VSYNC signal of the
display controller.

Thankfully the LPC1788 microcontroller meets all three requirements in its hardware. On
one hand, the LPC1788 microcontroller has an external memory controller which
supports external SRAM as well as SDRAM; on the other hand it has an LCD controller
with DMA capability. The LCD controller’s upper panel DMA base address register must
point to the correct framebuffer in the video RAM in order to eliminate screen artifacts.

In emWin, multiple buffering cannot be used with virtual screens.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 9 of 18

3. Firmware overview
To implement multiple buffering in emWin, two functions in file LCDConf.c need to be
modified:

• The display configuration routine LCD_X_Config()
• The driver callback function LCD_X_DisplayDriver()

The multiple-buffer interface must be configured before creating the display-driver
device. This is normally done in LCD_X_Config(). The buffer numbers to be used are
defined in file multibuff.h, and can be changed to a different value from the default value
of 3.

As explained above, at the beginning of the drawing operation it is required to copy the
content of the current front buffer to the back buffer. A simple memory copy can be used,
or for better performance a DMA based routine. In this application a simple memory copy
routine from emWin library is used. Fig 6 shows part of the code from the application.

Fig 6. LCD_X_Config code

The copy buffer function is shown in Fig 7.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 10 of 18

Fig 7. Copy buffer function

After the drawing process has been completed, the back buffer needs to become visible.
The display driver sends a LCD_X_SHOWBUFFER command to the display driver
callback function. The callback function then has to react on the command and should
make sure that the buffer becomes visible. This can be done either by an ISR or by
directly writing the right address into the framebuffer start address of the display
controller. In the LPC1788 LCD controller’s, LCD base update interrupt can be used for
this purpose. As current base update registers in LPC1788s LCD controller are updated
at vertical synchronization, LCD base registers can be updated directly with framebuffer
without using ISR. This application is made to be used with ISR and without ISR. ISR can
be used by defining MULTIBUFF_USE_ISR 1 in multibuff.h file as shown below.

Fig 8. MULTIBUFF_USE_ISR

Following routine shows the initialization of the base-update interrupt. LPC1788 can drive
STN dual panel as well as TFT. To support Dual panel, it has two base update registers:
LCDUPBASE and LCDLPBASE register. The LCD next base address update interrupt
asserts when either the LCDUPBASE or LCDLPBASE values have been transferred to
the LCDUPCURR or LCDLPCURR registers respectively. In case of Embedded Artists'
7" TFT, only LCDUPBASE and LCDUPCURR are used. In this application example, the
LCD base address update interrupt asserts when LCD base register (LCDUPBASE)
value has been transferred to current base register (LCDUPCURR). This signals that it is
safe to update the LCD base address register with new frame base address which may
be required in some of the screen animation. For more detail about NXP’s LCD
Controller, please have a look at the LPC178x/7x user manual.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 11 of 18

As mentioned in case of TFT, only LCDUPBASE register has significance. The base
update interrupt is implemented as shown in below code.

Fig 9. Base update interrupt

When used with ISR, function LCD_X_DisplayDriver shows the pending buffer. This
pending buffer can be switched in the ISR as shown in Fig 9.

When the ISR is not used, function LCD_X_DisplayDriver is responsible to switch the
buffer.

The implementation of this function in both cases, with ISR and without ISR, is shown in
Fig 10 and Fig 11.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 12 of 18

Fig 10. LCD_X_DisplayDriver (1 of 2)

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 13 of 18

Fig 11. LCD_X_DisplayDriver (2 of 2)

All above code is part of the driver and initialization, whereas below functions need to be
called in the user’s application. Function GUI_MULTIBUF_Begin() needs to be called
before the drawing operation and GUI_MULTIBUF_End() needs to be called after
completion of the drawing operation.

Fig 12. MultiBufferingTest.c

Fig 12 shows a code snippet in file MultiBufferingTest.c which magnifies and displays an
image (array bmLPCWarewebbanner160x90[], inside LPCWare-web-banner-160x90.c
file) using multiple buffers. Bitmap converter utility from emWin is used to convert the
image from ..\Start\image\LPCWare-web-banner-160x90.bmp to c file. The bitmap
converter utility can be found in the emWin BSP inside folder of ..\Start\Tools\.

The Window Manager (WM) is able to use the multiple-buffer feature automatically. The
function WM_MULTIBUF_Enable() can be used to enable this functionality. If enabled
the WM first switches to the back buffer before redrawing the invalid windows. After
drawing all invalid windows, the new screen becomes visible. This hides the process of
drawing a screen window by window. To enable multiple buffers just pass parameter 1 to
above function.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 14 of 18

Fig 13 shows the system setup. You can power the LPC1788 board by connecting the
mini USB connector J25 to a PC or USB hub. Alternatively, a 5 V DC adapter can be
used to power the Embedded Artists’ board and the LCD after plugging it into connector
J24. A Keil uLink-2, uLink-Pro, uLink ME or other supported JTAG debuggers will be
needed with Keil µVision4 IDE to flash and debug the software. Jlink is used to debug
with IAR Embedded Workbench. LPCLink is used to debug with LPCXpresso. The
Embedded Artists’ 7 inch LCD is connected to connector J26 of the LPC1788 base
board. For details on the connection please check the Embedded Artists’ LPC1788
Developers Kit User Guide and the LCD Board User Guide.

Fig 13. Demo setup

4. Expected output
The project can be built by using any of the following IDEs:

• Keil uVision 4
• IAR Embedded Workbench 6
• LPCXpresso 5

For the exact version of the toolchain please go through the project readme file. After
flashing and running this application example, an LPCware image as shown in Fig 13 will
appear. Fig 13 shows one of the magnified images. The animation will continuously run
with different magnification ratios. After the entire magnification sequence has been
displayed, it will come back to its original size. When you change NUM_BUFFERS to 1
you can see flickering during magnification. In this case emWin is using only one buffer.

This demo can also be simulated using the Microsoft Visual C++ IDE which is useful
when final target is not ready.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 15 of 18

5. Conclusion
emWin’s multiple-buffering feature can be used to eliminate the effects of flickering and
tearing. With NXP’s LPC1788 microcontroller, the multiple-buffering feature can be used
with or without ISR. NXP’s LPC1788 and many other LPC microcontrollers can be
connected to external SRAM or SDRAM to fulfill the memory requirement of the multiple
buffering feature. The Base Update interrupt in the NXP LPC1788 microcontroller
ensures that the Base Address Registers are updated only when values from these
registers have been transferred from the Current Base Address register.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 16 of 18

6. Legal information

6.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

6.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

AN11328 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 11 February 2013 17 of 18

7. List of figures

Fig 1. Main system components 4
Fig 2. Single buffering: Same buffer used for drawing

and display .. 5
Fig 3. Tearing Effect .. 6
Fig 4. Double buffering: Separate buffers used for

drawing and display .. 7
Fig 5. Triple buffering: Two separate buffer for drawing

and one separate buffer for the display 8
Fig 6. LCD_X_Config code ... 9
Fig 7. Copy buffer function .. 10
Fig 8. MULTIBUFF_USE_ISR................................... 10
Fig 9. Base update interrupt 11
Fig 10. LCD_X_DisplayDriver (1 of 2) 12
Fig 11. LCD_X_DisplayDriver (2 of 2) 13
Fig 12. MultiBufferingTest.c .. 13
Fig 13. Demo setup ... 14

NXP Semiconductors AN11328
 Implementing emWin’s Multiple Buffering feature

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2013. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11 February 2013
Document identifier: AN11328

8. Contents

1. Introduction ... 3
1.1 Project overview ... 3
1.2 System components and system setup 3
2. Theory of operation ... 4
2.1 Double buffering ... 6
2.2 Triple buffering ... 7
2.3 Requirements ... 8
3. Firmware overview .. 9
4. Expected output .. 14
5. Conclusion ... 15
6. Legal information .. 16
6.1 Definitions .. 16
6.2 Disclaimers ... 16
6.3 Trademarks .. 16
7. List of figures ... 17
8. Contents ... 18

	1. Introduction
	1.1 Project overview
	1.2 System components and system setup

	2. Theory of operation
	2.1 Double buffering
	2.2 Triple buffering
	2.3 Requirements

	3. Firmware overview
	4. Expected output
	5. Conclusion
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Trademarks

	7. List of figures
	8. Contents

